

The 2010 ACM ASIA

Programming Contest
Dhaka Site

 Sponsored by IBM

Hosted by North South University
Dhaka, Bangladesh

6th November 2010
You get 21 Pages

10 Problems
&

300 Minutes

 2

Rules for ACM-ICPC 2010 Asia Regional Dhaka Site:

a) Solutions to problems submitted for judging are called runs. Each run is judged as accepted or
rejected by the judge, and the team is notified of the results. Submitted codes should not contain team
or University name and the file name should not have any white space.

b) Notification of accepted runs will NOT be suspended at the last one hour of the contest time to keep
the final results secret. Notification of rejected runs will also continue until the end of the contest. But
the teams will not be given any balloon and the public rank list will not be updated in the last one
hour.

c) A contestant may submit a clarification request to judges. If the judges agree that an ambiguity or
error exists, a clarification will be issued to all contestants.

d) Contestants are not to converse with anyone except members of their team and personnel designated
by the organizing committee while seated at the team desk. But they cannot even talk with their
team members when they are walking around the contest floor to have food or any other
purpose. Systems support staff may advise contestants on system-related problems such as explaining
system error messages.

e) While the contest is scheduled for a particular time length (five hours), the Chief Judge has the
authority to alter the length of the contest in the event of unforeseen difficulties. Should the contest
duration be altered, every attempt will be made to notify contestants in a timely and uniform manner.

f) A team may be disqualified by the Chief Judge for any activity that jeopardizes the contest such as
dislodging extension cords, unauthorized modification of contest materials, or distracting behavior. The
external judges will report to the chief judge about distracting behavior of any team. The external
judges can also recommend penalizing a team with additional penalty minutes for their
distracting behavior.

g) Nine, ten or eleven problems will be posed. So far as possible, problems will avoid dependence on
detailed knowledge of a particular applications area or particular contest language. Of these problems
at least two will be solvable by a first year computer science student, another one will be solvable by a
second year computer science student and rest will determine the winner.

h) Contestants will have foods available in their contest room during the contest. So they cannot leave
the contest room during the contest without permission from the external judges. The contestants are
not allowed to communicate with any contestant (Even contestants of his own team) or coach while are
outside the contest floor.

i) Team can bring up to 200 pages of printed materials with them but they can also bring three
additional books. But they are not allowed to bring calculators or any machine-readable devices like
CD, DVD, Pen-drive, IPOD, MP3/MP4 players, floppy disks etc. They are requested not to bring
calculator they got on mock day at the date of actual contest.

j) With the help of the volunteers and external judges, the contestants can have printouts of their codes
for debugging purposes.

k) The decision of the judges is final.

l) Teams should inform the volunteers if they don’t get reply from the judges within 10 minutes
of submission. Volunteers will inform the External Judge and the external judge will take further
action. Teams should also notify the volunteers if they cannot log in into the PC^2 system. This
sort of complains will not be entertained after the contest.

m) If you want to assume that judge data is weaker than what is stated, then do it at your own
risk :).

 3

A Emoogle Balance ☺
Input: Standard Input

Output: Standard Output

We have a very famous and popular fellow in our
problemsetters' panel. He is so famous that his name
is immaterial. Some of his admirers have recently
given him the nickname 'Emoogle'. Let's stick to that
name in our discussion for now. Being such a kind,
friendly and generous person as he is, Emoogle is
often known to give treats to the other
problemsetters. Some times, there is a strange rumor
in the air that his treats are mostly due to the fact
that, if he is not sparing enough for those treats,
'problems' are likely to be created. But let's not pay
heed to such nonsense!

Now, there is another word in the air that this remarkable man is going to get married
soon. To observe this special occasion with proper respect, his fellow troublemakers have
decided to compile a book named '99 reasons why Emoogle should give us a treat'. Every
single reason mentioned in this book is denoted by a number. For example, Emoogle
should give us a treat because -

1. If he does not, problems will be created. :)
2. His giveaway problem has been solved by less than 10 teams in the recent
programming contest.
3. He is going to join a world famous goggles manufacturing company soon.
4. He has found a ticket of a soccer world cup game while digging his backyard garden
in the morning.
5. He has just got a new Facebook fan club.
6. Having forgotten about a date with his wife-to-be which collided with a Topcoder
SRM (Single Round Match), he participated in the SRM. (May God bless his soul!)
7. A programming contest (may be this one?) is being arranged celebrating his
marriage.
8. He is getting engaged soon.
..................
99. Solely because he is the great and kind and sweet Emoogle.

If you have any more ideas about why he should throw a party, we would love to know.
Drop us a line at emoogle.party@gmail.com.

At this point, Dear brother Emoogle might want to remind us about the number of times he
has already thrown a party. Hence we introduce the term Emoogle Balance. This is defined
as :

Emoogle Balance = number of times Emoogle is supposed to give a treat
according to the book - number of times he has actually given the treat.

 4

In this problem, we want you to find Emoogle Balance. We also wish that Emoogle Balance
always keeps a healthy negative value and may dear brother Emoogle have a very happy
married life forever.

Input
There are around 75 test cases in the input file. Each test case describes a series of
events. A test case starts with an integer N (1 ≤ N ≤ 1000) denoting the number of
events in this test case. This integer is followed by a line with N integers, each describing
an event. These integers have values between 0 and 99 (inclusive). A value between 1
and 99 means a reason for Emoogle's giving a treat has occurred while a 0 means he has
given a treat.

The end of input will be denoted by a case with N = 0. This case should not be processed.

Output
For each test case, print a line in the format, “Case X: Y”, where X is the case number & Y
is the Emoogle Balance for this case.

Sample Input Output for Sample Input
5
3 4 0 0 1
4
2 0 0 0
7
1 2 3 4 5 0 0
0

Case 1: 1
Case 2: -2
Case 3: 3

Problemsetter: Mohammad Mahmudur Rahman, Special Thanks: Shahriar, Sohel, Manzurur

 5

B A Digital Satire…
Input: Standard Input

Output: Standard Output

The government of “Moderdesh” is planning to enter the digital age and so people of
different profession and business are proposing different ways to enter that age
successfully. The hardware vendors are saying that we need to provide a laptop for each
student, the mobile companies are saying that every children needs to have a mobile
phone in his small hand and talk all night long, the multimedia experts are crying for
Multimedia University and so on. But very few are crying for the overall improvement of
Computer Science education. We do not understand that by being only the consumer of
modern digital technologies we cannot enter the real digital age.

Now as a protest, some local
computer geeks are planning
to digitize the local vegetable
and grocery markets in a
strange way. The local markets
generally use weighing
balances as shown in the
figure-1 and they use
conventional weight sets as
shown in figure 2. The
computer geeks want to
introduce a new type of weight
set, where each piece will have
the shape of an upper case
English alphabet, and strangely
the weights of these pieces will
be related with their ASCII
valuess. For example the ASCII

value of ‘A’ is 65, which is 10000012 in binary. For each ‘1’ in binary representation a
weight of 500 gms will be added and for each ‘0’ in binary representation a weight of 250
gms will be added. So a piece with shape ‘A’ actually weighs (250*5+2*500) gm =
2250 grams. Note that leading zeroes in binary representation are not considered. The
geeks believe if others are correct about their ways to enter digital age, they are also
correct about digitizing the local markets by introducing new weight sets related to ASCII
characters.

Now in this problem you will be given (i) the picture of a weighing scale and the weight
pieces that it contains in left pan and in the right pan (ii) You will also be informed which
pan is heavier and which pan is lighter (Not necessarily correct). You will have to detect
whether the given information is correct or not. If the given information is not correct you
will have to rectify the picture and show it in the output.

Input
First line of the input file contains a positive integer T (T ≤ 6000) that denotes the number
of test sets. The description of each set of input is given below:

Figure 1: The weighing balance weighing a
papaya using letter shaped weights.

Figure 2:
Conventional
weight set

 6

Each set of input is given in a (7*18) grid. This grid actually contains the plain text
description of a weighing scale. Each location of the grid is either a dot ‘.’ (ASCII value 46)
or a front slash ‘/’ (ASCII Value 47) or a back slash ‘\’ (ASCII value 92) or an under
score ‘_’ (ASCII value 95) or a pipe ‘|’ (ASCII value 124) an upper case English Alphabet
(ASCII value 65 to 90). The (7*18) grid is divided into two equal parts by two vertical
lines formed with pipe character. The left part denotes the status of left pan and right part
denotes the status of the right pan. The bottom of the pan is formed with 6 (six) under
score characters and the ropes attached to the pans are formed with front slash and back
slash. The weights on both pans are placed just above the row that denotes bottom of the
pan and they are left justified. There can be maximum 6 weights on a single pan. There
are three possible vertical positioning of the pans (i) Left pan is low and right pan is high
(ii) Both pan is in the middle (iii) Left pan is high and right pan is low. If weight of both pan
is same then they should be in state (ii), if the left pan is heavier then they should be in
status (i) and so on. In the input the pans are always in position (i), (ii) or (iii) but that
may not be the correct position according to the weights they contain.

A line containing 18 (eighteen) ‘-’ (minus) signs follows each set of input.

Output
For each set of input produce two or eight line of output. First line should contain the serial
of output. If the pans in the input figure are in correct position according to the weights
they contain then in the second line print “The figure is correct.” (without the quotes). If
the pans are not in correct position then print the weighing balance again in a (7*18) grid
with the pans in the correct position. Look at the output for sample input for exact
formatting.

Sample Input Output for Sample Input
4
........||.../\...
........||../..\..
.../\...||./....\.
../..\..||/G.....\
./....\.||______/
/YQYFU.\||........
______/||........

.../\...||........
../..\..||........
./....\.||.../\...
/WCGQG.\||../..\..
______/||./....\.
........||/OYA...\
........||______/

.../\...||........
../..\..||........
./....\.||.../\...
/A.....\||../..\..
______/||./....\.
........||/A.....\
........||______/

........||........
.../\...||.../\...
../..\..||../..\..
./....\.||./....\.
/NQ....\||/FG....\
______/||______/
........||........

Case 1:
The figure is correct.
Case 2:
........||.../\...
........||../..\..
.../\...||./....\.
../..\..||/OYA...\
./....\.||______/
/WCGQG.\||........
______/||........
Case 3:
........||........
.../\...||.../\...
../..\..||../..\..
./....\.||./....\.
/A.....\||/A.....\
______/||______/
........||........
Case 4:
The figure is correct.

 7

C Hyper-Box
Input: Standard Input

Output: Standard Output

You live in the universe X where all the
physical laws and constants are different
from ours. For example all of their objects
are N-dimensional. The living beings of
the universe X want to build an N-
dimensional monument. We can consider
this N dimensional monument as an N-
dimensional hyper-box, which can be
divided into some N dimensional hyper-
cells. The length of each of the sides of a
hyper-cell is one. They will use some N-
dimensional bricks (or hyper-bricks) to
build this monument. But the length of
each of the N sides of a brick cannot be
anything other than fibonacci numbers. A

fibonacci sequence is given below:
1, 2, 3, 5, 8, 13, 21….

As you can see each value starting from 3 is the sum of previous 2 values. So for N=3
they can use bricks of sizes (2,5,3), (5,2,2) etc. but they cannot use bricks of size
(1,2,4) because the length 4 is not a fibonacci number. Now given the length of each of
the dimension of the monument determine the minimum number of hyper-bricks required
to build the monument. No two hyper-bricks should intersect with each other or should not
go out of the hyper-box region of the monument. Also none of the hyper-cells of the
monument should be empty.

Input
First line of the input file is an integer T(1≤T≤100) which denotes the number of test
cases. Each test case starts with a line containing N (1≤N≤15) that denotes the
dimension of the monument and the bricks. Next line contains N integers the length in
each dimension. Each of these integers will be between 1 and 2000000000 inclusive.

Output
For each test case output contains a line in the format Case x: M where x is the case
number (starting from 1) and M is the minimum number of hyper-bricks required to build
the monument.

Sample Input Output for Sample Input
2
2
4 4
3
5 7 8

Case 1: 4
Case 2: 2

Problemsetter: Abdullah al Mahmud, Special Thanks: Arifuzzaman Arif

 8

D OmniGravity
Input: Standard Input

Output: Standard Output

In this problem, we will play with four 2x2 squared pieces, an 8x8 board, few obstacles and
gravity(!!!).

Initially the board contains few obstacles and the 4 colored pieces randomly placed. An
example of an initial configuration is shown in the above diagram. The black squares
represent the obstacles and the 4 colored pieces are shown with labels A, B, C and D - (in
order to help the colorblind people). Initially there is no gravity and thus the pieces remain
at a steady position. We can enable ‘gravity’ in any of the four directions to move the
pieces. The pieces move in the direction of gravity. A piece continues to move until it hits
an edge of the board, an obstacle or any other piece. The obstacles aren’t affected by
gravity and so remains in their initial position at all times. We can enable at most one
‘gravity’ at a time. The gravitational direction can only be changed when all the pieces are
static.

The diagram to the left shows the positions of the pieces after
the ‘gravity’ from the right is enabled.
How many different static states can be reached by enabling
at least one ‘gravity’? Two states are different if there is at
least once cell that has a different color. A static state is one
in which all the pieces are steady!

 9

Input
The first line of input is an integer T (T≤100) that indicates the number of test cases.
Each case consists of 8 lines with 8 characters in each line. Every character will be from
the set {A, B, C, D, ., #}. Dots(.) represent empty spaces, hashes(#) represent obstacles
and the alphabets represents the pieces. The frequencies of each letter (A,B,C,D) will be
exactly 4 and each letter will occupy positions so that they form squares of size 2 x 2.
There is a blank line before every case.

Output
For each case, output the case number followed by the number of different static states
that can be reached from the original position by enabling at least one “gravity”.

Sample Input Output for Sample Input
2

....AA..
....AA#.
...#....
.CCBB...
.CCBB#..
#...##..
.#DD#...
..DD.##.

AABBCCDD
AABBCCDD
........
........
........
........
........
........

Case 1: 110
Case 2: 2

Problemsetter: Sohel Hafiz, Special Thanks: Jane Alam Jan

 10

E Halloween Costumes
Input: Standard Input

Output: Standard Output

Gappu has a very busy weekend ahead of him. Because, next
weekend is Halloween, and he is planning to attend as many
parties as he can. Since it’s Halloween, these parties are all
costume parties, Gappu always selects his costumes in such a way
that it blends with his friends, that is, when he is attending the
party, arranged by his comic-book-fan friends, he will go with the
costume of Superman, but when the party is arranged contest-
buddies, he would go with the costume of ‘Chinese Postman’.

Since he is going to attend a number of parties on the Halloween
night, and wear costumes accordingly, he will be changing his
costumes a number of times. So, to make things a little easier, he
may put on costumes one over another (that is he may wear the

uniform for the postman, over the superman costume). Before each party he can take off
some of the costumes, or wear a new one. That is, if he is wearing the Postman uniform
over the Superman costume, and wants to go to a party in Superman costume, he can
take off the Postman uniform, or he can wear a new Superman uniform. But, keep in mind
that, Gappu doesn’t like to wear dresses without cleaning them first, so, after taking off
the Postman uniform, he cannot use that again in the Halloween night, if he needs the
Postman costume again, he will have to use a new one. He can take off any number of
costumes, and if he takes off k of the costumes, that will be the last k ones (e.g. if he
wears costume A before costume B, to take off A, first he has to remove B).

Given the parties and the costumes, find the minimum number of costumes Gappu will
need in the Halloween night.

Input
First line contains T (T ≤ 2500), the number of test cases.

Each test case starts with two integers, N and M(1≤N,M≤100), the number of parties,
and number of different types of costumes. Next line contains N integers, ci (1 ≤ ci ≤ M),
the costume he will be wearing in party i. He will attend the party 1 first, then party 2, and
so on.

There is a blank line before each test case.

Output
For each test case, output the minimum number of required costumes. Look at the output
for sample input for details.

 11

Sample Input Output for Sample Input
4

1 1
1

2 2
1 1

3 2
1 2 1

7 3
1 2 1 1 3 2 1

Case 1: 1
Case 2: 1
Case 3: 2
Case 4: 4

Problemsetter: Manzurur Rahman Khan, Special Thanks: Arifuzzaman Arif

 12

F Digital Matrix
Input: Standard Input

Output: Standard Output

You are given two N x N square
matrices, A and B. Each of the
elements of these matrices is an
integer between 1 and
K(inclusive). You have to convert
matrix A into matrix B in
minimum number of operations.
In each operation you can choose
one element of matrix A and
change it to any integer between
1 and K (inclusive). You have to
ensure that after any operation
the matrix is not converted to a
symmetric matrix. A square
matrix is said to be symmetric if
jth element of ith row is equal to
the ith element of jth row for all
(i, j) where 1 ≤ i ≤ N and 1 ≤ j ≤ N. For example –

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

653
542
321

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

653
542
221

Symmetric Matrix Non-symmetric Matrix

Input
Input will start with an integer T (T ≤ 200), number of test cases. Each test case starts
with a line containing two integers N (1 ≤ N ≤ 100) and K (1 ≤ K ≤ 9). This line will be
followed by 2N lines. First N lines will represent matrix A and next N line will represent
matrix B. Each of these 2N lines will contain N integers, all of these integers are in
between 1 and K (inclusive).

Output
For each test case, output a single line containing the case number followed by the
minimum number of operations required to convert A into B. If it is impossible to convert
A into B obeying the rules, print -1 instead. See output for sample input for exact
formatting.

 13

Sample Input Output for Sample Input
3
3 9
1 2 3
4 5 6
7 8 9
1 2 3
4 5 6
7 8 9
2 3
1 2
1 1
1 1
3 1
2 3
1 2
3 1
1 3
2 1

Case 1: 0
Case 2: 2
Case 3: 3

Warning: Don’t use cin, cout for this problem, use faster i/o methods e.g scanf, printf.

Problem Setter: Md. Arifuzzaman Arif, Special Thanks: Manzurur Rahman Khan, Sohel Hafiz

 14

G Knockout Tournaments
Input: Standard Input

Output: Standard Output

Knockout tournaments are sometimes heart breaking for players but still they are very
much common in real world because the audience love them so much. Some tournaments
have round robin format initially and then they turn into knockout tournaments in latter
rounds (Like FIFA Soccer World Cup). On the other hand most lawn tennis tournaments are
knockout tournaments from the very first round. Such a knockout tournament with n
rounds has 2n teams. The first round can be considered as round 1 and the final match can
be considered as round n. Bob has been participating in computer created tennis
tournaments in his laptop computer for a long time now. He keeps track of how many
matches he has won and how many matches he has lost and at the end of 10, 20 or 30
years he starts to calculate his performance. But the problem is that he cannot keep track
of what round he has reached in which tournament and also in how many tournaments he
has participated in because he plays thousands of computer-generated matches per day.
Now your job is to assist him to calculate his average performance considering that each
possible scenario has equal weight.

Figure: A knockout tournament structure with four rounds and 16
(24) players. But of course in this problem all tournaments has 8
rounds and 256 players.

 15

You can assume the following thing for simplicity:
(a) All the tournaments that Bob participates in have exactly 8 (eight) rounds.
(b) Bob can be ousted from a tournament if and only if he loses a match. Every match

has two possible outcomes (i) Winning (ii) Losing.
(c) If he wins a match at round n he moves to round (n+1) if (n<8). At round 8 if he

wins a match he becomes the champion but does not move to round 9 (Remains at
8).

Your job is to write a program that tells bob about his average performance.

Input
The input file contains at most 2005 lines of inputs. Each line contains two integers W
(0≤W≤200000000) and L(0≤L≤200000000). Here W denotes the number of matches
Bob has won in a specific time and L denotes the number of matches he has lost in that
same time. Input is terminated by a line containing two zeroes. This line should not be
processed.

Output
For each line of input produce two lines of output. First line contains the serial of output.
Next line describes his average performance considering all possible scenarios. The
floating-point number should be rounded to two digits after the decimal point. Two
scenarios are different if and only if number of tournaments played is different. In
determining average you must assume that all possible scenario has equal weight. If the
given value of W and L does not illustrate any practical scenario print "Situation
Impossible." (without the quotes) instead. Look at the output for sample input for
formatting details. Judge input is such that small precision error would not cause difference
in output.

Sample Input Output for Sample Input
10 2
11 2
0 0

Case 1:
On Average Bob Reaches Round 5.00
Case 2:
On Average Bob Reaches Round 5.42

Illustration of 2nd sample input/output:
In the 2nd sample input it is given that in a certain time Bob has 11 wins and 2 losses. If
he participates in two tournaments then on average he reaches 6.5 round, and if he
participates in three tournaments then he reaches on average round 4.33. So considering
all possible scenario he reaches round (6.5+4.33)/2 ~ round 5.42.

Problemsetter: Shahriar Manzoor, Special Thanks: Derek Kisman

 16

H Optimal Store
Input: Standard Input

Output: Standard Output

You live in a flat world and
you have to carry some goods
to three destinations A, B, C
from a storeroom. You know
the location of A, B and C and
you have to find an optimal
location G for the storeroom
and build the storeroom at G.
But for carrying goods you
have only one truck available
and that can drive through
any place/location you want.
The truck will initially be
located at G. But this truck is
not large enough to carry
goods for more than one place
at a time. So for minimum
path covering what you do is:

1. Always drive from one place to another in straight line.
2. Load goods in the truck at G.
3. Carry these goods to the nearest destination to G.
4. Unload the goods at the nearest destination.
5. Drive the empty truck back to G.
6. Load good in the truck at G.
7. Carry these goods to the 2nd nearest destination from G.
8. Unload the goods at the 2nd nearest destination.
9. Drive the empty truck back to G.
10.Load goods in the truck at G.
11.Carry these goods to the farthest destination from G. And of course stay at G, as

you have to carry nothing else.

If you had known the location of G then to find the minimum driving length would have
been very easy. But for this problem your job is to find a location of G for which the total
path length would be minimum and report this minimum driving length.

Input
The input file contains less than 11000 lines of input.

Each line contains six integer numbers Ax, Ay, Bx, By, Cx, Cy. You can assume that (0 ≤
Ax, Ay, Bx, By, Cx, Cy ≤ 1000). These integers denote that the location of A, B and C in
two-dimensional Cartesian coordinate system is (Ax, Ay), (Bx, By) and (Cx, Cy)
respectively.

A line containing six negative numbers terminates the input.

 17

Output
For each line of input except the last one produce one line of output. This line contains the
serial of output followed by a floating-point number d, which denotes the minimum driving
length needed from the optimal location of G. This number should have eight digits after
the decimal point. Errors less than 10-7 will be ignored. Look at the output for sample input
for details.

Sample Input Output for Sample Input
0 0 15 0 8 1
-1 –1 –1 –1 –1 –1

Case 1: 22.20439337

Problemsetter: Shahriar Manzoor, Special Thanks: Derek Kisman

 18

I Network Flow
Input: Standard Input

Output: Standard Output

In a water refining plant, the flow of
impure water is passed through a network
consisting of straight-line water pipes.
There are several pipes in the network.
Each of them performs a particular
operation in the refinement process. So,
the impure water must pass through each
of them. These pipes are placed on a 2D
grid like surface and the two endpoints of
each pipe can be described by a pair of

integer coordinates. Every two pipes sharing an endpoint are joined at that location
through a multi-way connector. Each connector has one or two pairs of openings. All the
openings are connected to some pipe. In addition to the openings for joining pipes, each
connector can be connected to a water tank. So, in a single refinement process, the tank
full of impure water is connected to one of the connectors, all of the water is passed
through the pipe networks as necessary and then purified water is brought back to the
tank. It might be important to clarify that there is only one tank in the system and there is
no additional pipe to send fresh water back to the tank once the purification is done. Also,
in order to prevent overuse of the pipes, in a single refinement process water is allowed to
pass through any pipe exactly once. This single flow through a pipe can be in any direction.

Now, waters can move freely through the pipes but if they need to change direction in the
connectors, external energy must be supplied by using pumps. The amount of rotation can
be expressed as a function of the pump's energy. For a network, TRA (Total Rotation
Amount) can be calculated in the following way. After the flow is complete, a polygon is
created by tracing the path of water flow inside the network. Then at each node of the
polygon, we take the smallest angle between the two lines adjacent to it. By summing up
these angle values for all the nodes, we get the TRA. A pump with e units of energy can
provide Ae3 + Be2 + Ce + D full circle amount of TRA where A, B, C, D are non-negative
integer constants.

You are given the description of a network and the A, B, C, D, e values of a pump. Your
task is to determine the maximum percentage of energy that can remain unused after
completing a single refinement process. Percentage can be found by the formula - unused
energy / total energy * 100.

Input
There will be at most 40 cases in the input file. Each test case starts with a line with 6
integers, E (3 ≤ E ≤ 20000), A, B, C, D (0 ≤ A, B, C, D ≤ 5) & e (0 ≤ e ≤ 50). E is the
number of pipes in the network while A, B, C, D & e are the description of the pump as
mentioned in the statement above. Each of the following E lines contains 4 integers: x1,
y1, x2, y2 (0 ≤ x1, y1, x2, y2 ≤ 10,000), denoting the coordinates of two endpoints of
a pipe.

The final test case is followed by a line containing a single 0 denoting end of input.

 19

Output
For each test case, print the case number at first. Then if it is possible to complete a flow
in this network using the given pump, print the maximum possible percentage of unused
energy rounded to 2 digits after decimal point. If it's not possible to complete a flow cycle,
report so. Check sample input for exact formatting.

Sample Input Output for Sample Input
4 1 1 1 1 1
1 2 2 1
2 1 1 0
1 0 0 1
0 1 1 2
4 1 1 1 0 0
1 2 2 1
2 1 1 0
1 0 0 1
0 1 1 2
0

Case 1: 75.00
Case 2: Impossible

Problemsetter: Mohammad Mahmudur Rahman, Special Thanks: Jane Alam Jan

 20

J Hyper Knights
Input: Standard Input

Output: Standard Output

'Hyper Knights' is a puzzle game played in a 2D board. Though the game may not be too
familiar to you, but in 'KnightsLand' it’s a very popular game. The best thing of the game is
that many people can play the game together competing others. The rules of the games
are as follows:

Initially an m x n white board is taken and in each cell an integer is written. After that
some cells are colored green and some cells are colored red. All the players are sent one
copy of the board. Then each of the players starts placing Hyper Knights (like chess
knights) in the board for one hour. No player can see others board.
When placing Hyper Knights, each player can use as many Hyper Knights as they want, but
the jury accepts a board if the following constraints are
fulfilled.

1) In each cell, at most one Hyper Knight can be placed.
2) A Hyper Knight should be placed in each green cell.
3) No Hyper Knight should be placed in the red cells.
4) No two Hyper Knights in the board should be in

attacking positions.
5) A board with no Hyper Knights is rejected.

Two Hyper Knights are said to be in attacking positions if
1) their vertical distance is 3 and horizontal distance is 1

or,
2) their vertical distance is 1 and horizontal distance is 3

The scoring technique is quite simple. For a player’s accepted board, if a cell contains a
Hyper Knight, then the player is awarded a score same as the integer written in that cell.
And for all his placed Hyper Knights, he sums up his scores. The player whose overall score
is highest wins the game. If several players tie; all of them are declared as the winners.
Now, you are given a 'Hyper Knights' board as described, you have to find the maximum
score a player can get in that board maintaining all the restrictions.

Input
Input starts with an integer T (≤ 200) denoting number of cases.

Each case starts with a black line. Next line contains two integers, m and n (1 ≤ m, n ≤
30) denoting the board with m rows and n columns. The rows are numbered from 0 to m
- 1 and the columns are numbered from 0 to n – 1. Each of the next m lines contains n
integers, separated by spaces. The jth integer in the ith line denotes the integer written in
the cell in ith row and jth column. The absolute value of each integer will be less than 106.
Next line contains an integer P denoting the number of distinct green cells. Each of the
next P lines contains two integers i and j, denoting that the cell in ith row and jth column
is green.

 21

Next line contains an integer Q (Q < m * n) denoting the number of distinct red cells.
Each of the next Q lines contains two integers i and j, denoting that the cell in i-th row
and j-th column is red.

If you place Hyper Knights in all green cells you are guaranteed that no two of them will be
in attacking positions. And you may also assume that no cell will be colored both red and
green.

Output
For each case, print a line containing the case number and the maximum score a player
can make. After that you have to print the lexicographically smallest Hyper Knight
placement that forms the maximum score. Print the row and column position of each Hyper
Knight in separate lines. See the samples for details.

To check the lexicographical order we first make a list using each Hyper Knight placement
as [a1, b1, a2, b2 ... ax, bx], where cell (ai, bi) contains a Hyper Knight. After that we find
the lexicographical order using these lists. For example, [1, 2, 21, 5] is smaller than [1,
11] and [1, 1, 12, 13] is smaller than [1, 1, 12, 13, 1, 3].

Sample Input Output for Sample Input
2

3 4
2 1 3 1
7 2 1 100
1 2 1 100
1
1 0
4
0 2
0 1
2 1
2 2

2 4
2 1 1 1
1 1 1 1
0
0

Case 1: 110
1 0
1 1
1 2
1 3
Case 2: 7
0 0
0 1
0 2
0 3
1 1
1 2

Warning: Don’t use cin, cout for this problem, use faster i/o methods e.g scanf, printf.

Problemsetter: Jane Alam Jan, Special Thanks: Manzurur Rahman Khan

