| Input: Standard Input |
| :---: | :---: | :---: |
| Output: Standard Output |

How many triangles are there when they have integer length sides and all the sides are between X and Y inclusive. Two triangles differs if their side length set s are different. For example $\{2,3,3\},\{2,3,4\}$ and $\{2,2,3\}$ are all different triangles. But $\{5,6,7\}$ and $\{6,5,7\}$ are not different. In a triangle the sum of smaller two sides are strictly greater than the largest side.

Input

Input starts with an integer $\mathrm{T}(1 \leq \mathrm{T} \leq 20000)$, the number of test cases. Each test case consists of two integer X and $\mathrm{Y}(1 \leq \mathrm{X} \leq \mathrm{Y} \leq 1000000)$.

Output

For each test case, output the number of possible triangles whose side lengths are between X and Y inclusive.

Sample Input
Output for Sample Input

5	125
1	10
5	10
5	15
1020	252
100400	285
	3898600

Problemsetter: Abdullah-al-Mahmud

