

## **Triangle**

Input: Standard Input
Output: Standard Output



How many triangles are there when they have integer length sides and all the sides are between X and Y inclusive. Two triangles differs if their side length set s are different. For example  $\{2,3,3\}$ ,  $\{2,3,4\}$  and  $\{2,2,3\}$  are all different triangles. But  $\{5,6,7\}$  and  $\{6,5,7\}$  are not different. In a triangle the sum of smaller two sides are strictly greater than the largest side.

## Input

Input starts with an integer  $T(1 \le T \le 20000)$ , the number of test cases. Each test case consists of two integer X and  $Y(1 \le X \le Y \le 1000000)$ .

## **Output**

For each test case, output the number of possible triangles whose side lengths are between X and Y inclusive.

Sample Input

**Output for Sample Input** 

| 100 400 | 5<br>1 10<br>5 10<br>5 15<br>10 20<br>100 40 | 00 |  | 125<br>55<br>252<br>285<br>3898600 |  |  |
|---------|----------------------------------------------|----|--|------------------------------------|--|--|
|---------|----------------------------------------------|----|--|------------------------------------|--|--|

Problemsetter: Abdullah-al-Mahmud