Problem I
 Come and Go

In a certain city there are N intersections connected by one-way and two-way streets. It is a modern city, and several of the streets have tunnels or overpasses. Evidently it must be possible to travel between any two intersections. More precisely given two intersections V and W it must be possible to travel from V to W and from W to V.

Your task is to write a program that reads a description of the city street system and determines whether the requirement of connectedness is satisfied or not.

Input

The input contains several test cases. The first line of a test case contains two integers N and M, separated by a space, indicating the number of intersections $(2 \leq N \leq 2000)$ and number of streets $(2 \leq M \leq N(N-1) / 2)$. The next M lines describe the city street system, with each line describing one street. A street description consists of three integers V, W and P, separated by a blank space, where V and W are distinct identifiers for intersections ($1 \leq V, W \leq N$, $V \neq W)$ and P can be 1 or 2 ; if $P=1$ the street is one-way, and traffic goes from V to W; if $P=2$ then the street is two-way and links V and W. A pair of intersections is connected by at most one street.

The last test case is followed by a line that contains only two zero numbers separated by a blank space.

Output

For each test case your program should print a single line containing an integer G, where G is equal to one if the condition of connectedness is satisfied, and G is zero otherwise.

Sample input	Sample output	
4	5	
1	2	1
1	3	2
2	4	1
3	4	1
4	1	2
3	2	
1	2	2
1	3	2
3	2	1
1	2	2
1	3	1
4	2	
1	2	2
3	4	2
0	0	0

