

Problem H Hackers' Crackdown

Input: Standard InputOutput: Standard Output

Miracle Corporations has a number of system services running in a distributed computer system which is a prime target for hackers. The system is basically a set of **N** computer nodes with each of them running a set of **N** services. Note that, the set of services running on every node is same everywhere in the network. A hacker can destroy a service by running a specialized exploit for that service in all the nodes.

One day, a smart hacker collects necessary exploits for all these N services and launches an attack on the system. He finds a security hole that gives him just enough time to run a single exploit in each computer. These exploits have the characteristic that, its successfully infects the computer where it was originally run and all the neighbor computers of that node.

Given a network description, find the maximum number of services that the hacker can damage.

Input

There will be multiple test cases in the input file. A test case begins with an integer N = N = 16, the number of nodes in the network. The nodes are denoted by 0 to N - 1. Each of the following N lines describes the neighbors of a node. Line i = (0 < i < N) represents the description of node i. The description for node i starts with an integer m (Number of neighbors for node i), followed by m integers in the range of m0 to m1, each denoting a neighboring node of node m1.

The end of input will be denoted by a case with N = 0. This case should not be processed.

Output

For each test case, print a line in the format, "Case X: Y", where X is the case number & Y is the maximum possible number of services that can be damaged.

Sample Input	Output for Sample Input
3	Case 1: 3
2 1 2	Case 2: 2
2 0 2	
2 0 1	
4	
1 1	
1 0	
1 3	
1 2	
0	

Problemsetter: Mohammad Mahmudur Rahman Special Thanks Manzurur Rahman Khan