Problem E
 Configurations

Input：Standard Input
Output：Standard Output

Well，in this problem you are given an RxC grid（ $1 \leq \mathrm{R} \leq 10^{9}$ and $1 \leq \mathrm{C} \leq 10$ ）．There will be B blocks $(1 \leq \mathrm{B} \leq 100)$ in the grid．Each block will be placed in a cell of the grid．There can be more than one blocks in a cell．

Now you are given M identical tokens and you can place them in the first row as you like．A cell cannot contain more than one token and you also cannot place a token in a cell occupied by blocks． Now you can move a token but you have to follow following rules：

1．If there is a token in a cell (r, c) then you can move it to either $(\mathrm{r}+1, \mathrm{c}-1)$ or $(\mathrm{r}+1, \mathrm{c}+1)$ ．
2．You cannot move a token to a cell occupied by blocks．
3．You cannot move a token outside of the grid．
4．You cannot move two or more tokens to the same cell．
5．All the tokens should be moved to i －th row before any token can be moved（ $\mathrm{i}+1$ ）－th row．
Now let $S=\left\{\left(1, c_{1}\right),\left(1, c_{2}\right), \ldots,\left(1, c_{M}\right)\right)$ be the set of cells of where you placed M identical tokens and $\mathrm{W}(\mathrm{S})=$ number of ways you can move these tokens to last row．You have to find the sum of W for every possible S ．

For $\mathrm{R}=2, \mathrm{C}=2, \mathrm{M}=1$ and $\mathrm{B}=0$ the answer is 2 ．

Input

First line contains number of test cases $1 \leq T \leq 500$ ．For each test case，the first line contains $1 \leq R \leq 10^{9}, 1 \leq C \leq 10$ and $0 \leq M \leq C$ respectively．The second line contains $0 \leq B \leq 100$ ，followed by B lines and each of those B lines contains two integers r and $c,(1 \leq r \leq R$ and $1 \leq c \leq C)$ indicating the cell position of each block．

Output

For each test cases you have to output the answer in a single line as shown in the sample output．As the answer can be very large you have to mod the output with 12345.

Sample Input	Output for Sample Input
$\begin{array}{\|lllll} \hline 3 & & & & \\ 1000000000 & 10 & 0 \\ 0 & & & & \\ 1000000000 & 10 & 2 \\ 0 & & & & \\ 10202 & 10 & 2 & & \\ 4 & & & & \\ 10 & 3 & & & \\ 11 & 2 & & & \\ 20 & 3 & & & \\ 20 & 5 & & & \\ \hline \end{array}$	Case 1: 1 Case 2: 4973 Case 3: 3205

Problemsetter: Kazi Rakibul Hossain
Special Thanks: Md. Arifuzzaman Arif, Jane Alam Jan

