acm
International Collegiate Programming Contest

Problem B Bisectors
 Input: Standard Input
 Output: Standard Output

We all probably know how to find equation of bisectors in Coordinate Geometry. If the equations of two lines are $a_{i} x+b_{i} y+c_{i}=0$ and $a_{j} x+b_{j} y+c_{j}=0$, then the equations of the bisectors

$$
\frac{a_{i} x+b_{i} y+c_{i}}{\sqrt{a_{i}^{2}+b_{i}^{2}}}= \pm \frac{a_{j} x+b_{j} y+c_{j}}{\sqrt{a_{j}^{2}+b_{j}^{2}}}
$$

Now one has to of the four angles they create are given by be quite intelligent to find out for which angles to choose the ' + '(plus) sign and for which angles to choose the ' - '(minus) sign. You will have to do similar sort of choosing in this problem. Suppose there is a fixed point $\left(C_{x}, C_{y}\right)$ and there are $n(n \leq 10000)$ other points around it. No two points from these n points are collinear with $\left(C_{x}, C_{y}\right)$. If you connect all these point with $\left(C_{x}, C_{y}\right)$ you will get a star-topology like image made of n lines. The equations of these n lines are also given and only these equations must be used when finding the equation of bisectors. This n lines create $n(n-1) / 2$ acute or obtuse angles in total and so they have total $n(n-1) / 2$ bisectors. You have to find out how many of these bisectors have equations formed using the + sign. The image below shows an image where $\mathrm{n}=5, \mathrm{C}_{\mathrm{x}}=5$ and $\mathrm{C}_{\mathrm{y}}=2$. This image corresponds to the only sample input.

Figure: Five lines above create 5(5-1)/2=10 angles and these angles has 10 bisectors. Of these 10 bisectors, the equation of only 4 are formed using the + sign
of the formula $\frac{a_{i} x+b_{i} y+c_{i}}{\sqrt{a_{i}^{2}+b_{i}^{2}}}= \pm \frac{a_{j} x+b_{j} y+c_{j}}{\sqrt{a_{j}^{2}+b_{j}^{2}}}$

Input

The input file contains maximum 35 sets of inputs. The description of each set is given below:

First line of each set contains three integers $C_{x}, C_{y}\left(-10000 \leq C_{x}, C_{y} \leq 10000\right)$ and $n(0 \leq n \leq$ 10000). Each of the next n lines contains two integers xi, yi ($20000 \leq x i, y i \leq 20000$) and a string of the form $\mathrm{a}_{\mathrm{i}} \mathrm{x}+\mathrm{b}_{\mathrm{i}} \mathrm{y}+\mathrm{c}_{\mathrm{i}}=0$. Here (xi, yi) is the coordinate of a point around (Cx, Cy) and the string denotes the equation of the line segment formed by connecting (C_{x}, C_{y}) and (xi, yi). You can assume that $\left(-100000 \leq a_{i}, b_{i} \leq 100000\right)$ and $\left(-2000000000 \leq c_{i} \leq 2000000000\right)$. This equation will actually be used to find the equations of bisectors of the angles that this line creates.

Input is terminated by a set where the value of n is zero.

Output

For each set of input produce one line of output. This line contains an integer number P that denotes of the $\frac{n(n-1)}{2}$ bisector equations how many are formed using the + sign in the bisector equation $\frac{a_{i} x+b_{i} y+c_{i}}{\sqrt{a_{i}^{2}+b_{i}^{2}}}= \pm \frac{a_{j} x+b_{j} y+c_{j}}{\sqrt{a_{j}^{2}+b_{j}^{2}}}$.

Sample Input	Output for Sample Input
525	4
$12710 x-14 y-22=0$	
1-4 24x-16y-88=0	
$41032 x+4 y-168=0$	
-1 9 56x+48y-376=0	
$12-3-10 x-14 y+78=0$	
10100	

Problemsetter: Shahriar Manzoor Special Thanks: Derek Kisman

