Problem A
 Dhaka Bots

Input: Standard Input
Output: Standard Output
Being the expert programmer that you are, you have decided to put your skills to proper use by making life easier for all vehicle-riding inhabitants of Dhaka city. That is right, you are now in the middle of a project that will eliminate all traffic jams! In a sudden fit of enthusiasm you start to create the control software for those autonomous vehicles, only to realize it is harder than it seemed. You are now to create a small part of that software.

The case you need to handle is simply this: find the time of collision between two vehicles, both going at (possibly different) constant speeds, one of them in a straight line and the other in a circle in counterclockwise direction. You may assume that the vehicles are running on a flat 2D plane, and that they can be modeled as square of a given size with edges parallel to a fixed Cartesian coordinate system at all times.

Input

The input file may contain multiple test cases (at most 100). The first line of the input file consists of a single non-negative integer \mathbf{t}, the number of test cases in the file. This line is followed by \mathbf{t} test cases, each consisting of exactly two lines of input. The first line describes the vehicle going in a straight line and has the format " $\boldsymbol{s}_{\mathbf{A}} \boldsymbol{x}_{\mathbf{A}} \boldsymbol{y}_{\mathbf{A}} \boldsymbol{v}_{\mathbf{A x}} \boldsymbol{v}_{\mathbf{A y}}$ " (without the quotes). $\mathbf{s}_{\mathbf{A}}$ is the length of each edge of the square representing this vehicle, $\left(\boldsymbol{x}_{\mathbf{A}}, \boldsymbol{y}_{\mathbf{A}}\right)$ is its starting point of the center of the square, ($\left.\boldsymbol{v}_{\mathrm{Ax}}, \boldsymbol{v}_{\mathrm{Ay}}\right)$ is its velocity in unit distance traveled per unit time. The second line of input in a test case represents the vehicle going round in a circle, and has the format " $s_{\mathbf{B}} \boldsymbol{x}_{\mathbf{B}} \boldsymbol{y}_{\mathbf{B}} \boldsymbol{c}_{\mathbf{x}} \boldsymbol{c}_{\mathbf{y}} \boldsymbol{v}_{\mathbf{B}}$ ". Once again, $\mathrm{s}_{\mathbf{B}}$ is the size of the square representing this vehicle, and ($\mathbf{x}_{\mathbf{B}}, \mathbf{y}_{\mathbf{B}}$) is the starting point of the center of this square. ($\mathbf{c}_{\mathbf{x}}, \mathbf{c}_{\mathbf{y}}$) is the
center of the circular path followed by the center of this square, and $\boldsymbol{v}_{\mathbf{B}}$ is its linear speed. All input numbers (other than \mathbf{t}) are real numbers with at most two decimal places. They will also satisfy the following constraints: $\left|x_{\mathrm{A}}\right|,\left|y_{\mathrm{A}}\right|,\left|x_{\mathrm{B}}\right|,\left|y_{\mathrm{B}}\right|,\left|c_{\mathrm{x}}\right|\left|c_{\mathrm{y}}\right| \leq 20000,\left|v_{\mathrm{Ax}}\right|,\left|v_{\mathrm{Ay}}\right| \leq 200,0 \leq v_{\mathrm{B}} \leq 200,0<s_{\mathrm{A}}, s_{\mathrm{B}} \leq$ 100. It is also guaranteed that the two squares do not already overlap in their given starting states.

Output

There should be a single line of output for each test case in the input file, and it should have the format "Case c: \mathbf{t} ". \mathbf{c} is the case number, starting from 1, and \mathbf{t} is the time it takes before the vehicles collide. Values within an absolute error of 10^{-5} of the actual answer will be accepted. If they never collide after starting in the state given, t should be replaced with the string "never". Note that, for this problem, just grazing across the sides or just touching corners is not considered a collision.

Sample Input	Output for Sample Input
2	Case 1: 7.216133
$\begin{array}{llllll}2 & -10 & -10 & 1\end{array}$	Case 2: never
2050010	
205001	

Problemsetter: Samee Zahur
Special Thanks to: Manzurur Rahman Khan

