

You are given an integer number \mathbf{S}. You can transform any integer number A to another integer number B by adding x to A. This x is an integer number which is a prime factor of A (Please note that 1 and A are not being considered as a factor of A). Now, your task is to find the minimum number of transformations required to transform S to another integer number \mathbf{T}.

Input

For each test case, there will be a line with two integers, $S(\mathbf{1}<=\mathbf{S}<=\mathbf{1 0 0}) \& T(\mathbf{1}<=\mathbf{T}<=\mathbf{1 0 0 0})$, as described above. The last test case will be followed by a line with two 0 s denoting end of output. This case should not be processed.

Output

For every test case except the last one, print a line of the form "Case X : Y " where X is the serial number of output (starting from 1). Y is the minimum number of transformations required to transform \mathbf{S} to \mathbf{T}. If it is not possible to make T from S with the given rules, Y shall be -1 .

Sample Input
612
613
00

Output for Sample Input
Case 1: 2
Case 2: -1

Explanation of case 1: You can make 12 from 6 in 2 steps in this way: 6->9->12.

