Problem I In-Ellipse
 Input: Standard Input
 Output: Standard Output

An in-ellipse of a triangle is an ellipse which touches all the sides of the triangle internally. In the figure below you can see a triangle ABC and one of its axis parallel in-ellipse.

Given the coordinate of vertices of a triangle, your job is to find that axis parallel in-ellipse. Note that any axis-parallel in-ellipse can be expressed uniquely with an equation of the following form:

$$
\frac{(x-h)^{2}}{a^{2}}+\frac{(y-k)^{2}}{b^{2}}=1
$$

Here (h, k) is the center of the ellipse (Intersection point of major and minor axis) and 2 a is the length of the major axis and $2 b$ is the length of the minor axis. So an axis-parallel ellipse can be uniquely described with four parameters h, k, a and b. For this problem b can be greater than a.

Input

The input file contains at most 10001 lines of inputs. Each line contains seven floating-point numbers $\mathrm{x}_{1}, \mathrm{y}_{1}, \mathrm{x}_{2}, \mathrm{y}_{2}, \mathrm{x}_{3}, \mathrm{y}_{3}$, El_A. The first six floating-point numbers denote that the three vertices of the triangle in counter-clockwise order are (x_{1}, y_{1}), (x_{2}, y_{2}) and (x_{3}, y_{3}). The seventh floating-point number El_A denotes the the area of in-ellipse of this triangle. Note that ($0 \leq \mathrm{x}_{1}, \mathrm{y}_{1}$, $\left.x_{2}, y_{2}, x_{3}, y_{3} \leq 5000\right)$ and ($0<E l _A<1000000$). Input is terminated by a line where the given area of the in-ellipse is negative. This line should not be processed.

Output

For each line of input produce one line of output. This line contains four floating-point numbers. These numbers denote the value of h, k, a and b of the desired (Axis parallel in-ellipse of the given triangle and having area El_A) ellipse. All these floating-point numbers should have ten (10) digits after the decimal point. For every input there will be a solution. If there is more than one solution, any one will be accepted. There is an special judge to ignore small precision errors. Also the value of a / b should be within 0.1 and 10 to not allow ellipses that are almost straight line - .

Sample Input

97.64193000002129 .1127667152155 .32861000001702 .4002779560385 .0688800000748 .04947784671781 .9759297640 138.7581800000246 .7354898358352 .2499900000197 .813460361854 .2186200000300 .6027786815423 .6516437136 $1727.1587740317349 .0465400000479 .424527730284 .82203000001561 .3000471558179 .7437900000-44.3989182783$

Output for Sample Input

165.08831670481730 .540262188411 .950048215147 .4659637479 143.3157614522257 .596873274011 .621087678711 .6041209071

Problem setter: Shahriar Manzoor Special Thanks: Derek Kisman

