# Problem F Sign of a Matrix Input: Standard Input Output: Standard Output

You have a  $\mathbf{n} \times \mathbf{n}$  zero matrix. In each **operation**, you can add one (or minus 1) to every element of a whole row, or add one (or minus 1) to every element of a whole column. Given the target signs of every element of the matrix, how many operations are needed?



## Input

There will be at most 100 test cases. Each test case begins with a

line containing a single integer  $\mathbf{n}$  ( $2 \le \mathbf{n} \le 100$ ), followed by  $\mathbf{n}$  lines of  $\mathbf{n}$  characters in each line. Each character is one of +, - or  $\mathbf{0}$ , corresponding to positive, negative and zero, respectively.

## Output

For each test case, print the case number and the minimum number of operations needed. If the target cannot be reached, print -1.

### Sample Input

### **Output for Sample Input**

| 4    |  | Case | 1: | 3  |  |
|------|--|------|----|----|--|
| 0+00 |  | Case | 2: | -1 |  |
| -+   |  |      |    |    |  |
| 0+00 |  |      |    |    |  |
| 0+00 |  |      |    |    |  |
| 2    |  |      |    |    |  |
| +0   |  |      |    |    |  |
| 00   |  |      |    |    |  |
| -1   |  |      |    |    |  |

#### Sample elaboration:

For the first sample input, target can be achieved by 3 moves only. By increasing the second column twice and decreasing the second row once. Which will convert the initial matrix to the following-

| 0  | +2 | 0  | 0  |
|----|----|----|----|
| -1 | +1 | -1 | -1 |
| 0  | +2 | 0  | 0  |
| 0  | +2 | 0  | 0  |
|    |    |    |    |

Which is the target matrix.

Problemsetter: Rujia Liu Refurbished by: Sohel Hafiz Special Thanks: Arifuzzaman Arif