Problem J

Bits

Input: Standard Input
Output: Standard Output
A bit is a binary digit, taking a logical value of either "1" or " 0 " (also referred to as "true" or "false" respectively). And every decimal number has a binary representation which is actually a series of bits. If a bit of a number is " 1 " and it's next bit is also " 1 " then we can say that the number has a 1 adjacent bit. And you have to find out how many times this scenario occurs for all numbers up to \mathbf{N}.

Examples:

Number	Binary	Adjacent Bits
12	1100	1
15	1111	3
27	11011	2

Input

For each test case, you are given an integer number ($0<=\mathrm{N}<=\left(\left(2^{\wedge} 63\right)-2\right)$), as described in the statement. The last test case is followed by a negative integer in a line by itself, denoting the end of input file.

Output

For every test case, print a line of the form "Case X: Y", where X is the serial of output (starting from 1) and Y is the cumulative summation of all adjacent bits from 0 to N .

Sample Input

0	
6	
15	
20	
21	
22	
-1	

Output for Sample Input
Case 1: 0
Case 2: 2
Case $3: 12$
Case 4: 13
Case 5: 13
Case 6: 14

