

July 24, 2009 http://www.aust.edu/iupc2009

Problem J Bits

Input: Standard Input Output: Standard Output

A **bit** is a binary digit, taking a logical value of either "1" or "0" (also referred to as "true" or "false" respectively). And every decimal number has a binary representation which is actually a series of bits. If a bit of a number is "1" and it's next bit is also "1" then we can say that the number has a 1 adjacent bit. And you have to find out how many times this scenario occurs for all numbers up to **N**.

Examples:

Number	Binary	Adjacent Bits
12	1100	1
15	1111	3
27	11011	2

Input

For each test case, you are given an integer number $(0 \le N \le ((2^{63})-2)))$, as described in the statement. The last test case is followed by a negative integer in a line by itself, denoting the end of input file.

Output

For every test case, print a line of the form "Case X: Y", where X is the serial of output (starting from 1) and Y is the cumulative summation of all adjacent bits from 0 to N.

Sample Input	Output for Sample Input
0	Case 1: 0
6	Case 2: 2
15	Case 3: 12
20	Case 4: 13
21	Case 5: 13
22	Case 6: 14
-1	