Problem I

Pyragrid

Input: Standard Input
Output: Standard Output
The great innovators of the great pyramid have another great new idea. They are now planning to build pyragrids - number of pyramid like stuffs assorted on a grid. What makes it even more interesting is the item they are making the grid with - bamboo. They have a huge field that can be treated as a 2D Cartesian plane. Let's assume the lower left corner of the field has co-ordinate $(-100,-100)$ while the upper right corner is $(100,100)$. A number of bamboo sticks (You can safely assume that even on that land of ideas, none has tried the weird idea of bending a bamboo stick. So, the sticks will be always straight) are placed on this field. There are two mechanical restrictions which must be met while placing bamboos. Firstly, the endpoint of a bamboo stick must be put on a grid point. Second, the sticks must be either lie parallel or form a 45 degree angle with one of the axes. These sticks intersect at different points and form a criss-crossed grid of irregular shaped cells. By the way, two bamboo sticks can overlap i.e. one stick can be placed on top of another one. I forgot to tell you, these new pyargrids have triangle shaped base, unlike the square shaped bases of the original pyramid. So, you can build a pyragrid on a cell only if the cell has triangular shape. You need to determine the number of possible cells on the grid where a pyragrid can be built.

Input

First line of each test case contains an integer $\mathrm{N}(1<=\mathrm{N}<=100)$, the number of bamboo sticks. Each of the next N lines has 4 integers, $\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2$ \& y 2 ($100<=\mathrm{x} 1, \mathrm{y} 1, \mathrm{x} 2, \mathrm{y} 2<=100$), where ($\mathrm{x} 1, \mathrm{y} 1$) are the co-ordinates of one end point of the bamboo stick while ($\mathrm{x} 2, \mathrm{y} 2$) are that of the other end. A stick will have length greater than 0 . The end of input will be denoted by a case with $\mathrm{N}=0$. This case should not be processed.

Output

For every test case except the last one, print one line of the form "Case X: Y", where X is the serial of output (starting from 1) and Y is the number of possible unique cells where a pyragrid can be placed.

AUST Inter University Programming Contest 2009

July 24, 2009
http://www.aust.edu/iupc2009

Sample Input

3			
0	0	5	0
0	0	5	5
0	5	5	0
5			
0	0	2	2
1	1	3	3
0	0	2	0
1	1	2	0
2	2	2	0
0			

0
0055
0550
5
0022
1133
0020
1120
2220

Output for Sample Inputs
Case 1: 1
Case 2: 3

