
... it is important to realize that any lock can be picked with a big enough hammer.

Sun System \& Network Admin Manual
My appartment has \mathbf{n} computers. My friend's appartment also has \mathbf{n} computers. In each appartment, some pairs of computers are connected to each other with AcidNet cables (ignoring the routers). Each connection has a certain bandwidth (in bytes per second). My friend always brags about the speed of his computer network. He always shows me his n-by-n table that lists the bandwidths between each pair of computers. My network is slower, and I want to rebuild it. So I want to know how I should connect my computers in order to have the same \mathbf{n}-by-n bandwidth table.

Since I don't want to buy too many AcidNet cables, you'll need to find a solution with the minimum number of connections. You may use AcidNet cables of any integer bandwidth - they all have the same price at my local Imaginary Hardware Store.

Problem, in short

Given a graph, you can compute the all-pairs maximum flow table, right? Now do the opposite: given an \mathbf{n}-by-n symmetric table, find a graph with fewest edges that has the given table of all-pairs maximum flows.

Input

The first line of input gives the number of cases, $\mathbf{N} . \mathbf{N}$ test cases follow. Each one is a line containing $\mathbf{n}(0<\mathbf{n} \leq 200)$, followed by \mathbf{n} lines with \mathbf{n} integers each, giving the table \mathbf{T}.

- $\mathbf{T}[u][u]$ will always be 0 .
- $\mathbf{T}[u][v]$ will always be positive and equal to $\mathbf{T}[v][u]$.
- T[i][j] ≤ 10000
\mathbf{T} [u] [v] is the largest possible speed (in bytes per second) for sending information from computer u to computer v , assuming there is no other traffic on the network.

Output

For each test case, output one line containing "Case \#x:" followed by \mathbf{m} - the number of cables I have to buy. The next \mathbf{m} lines will each contain 3 integers \mathbf{u}, \mathbf{v} and \mathbf{w} meaning that I need to connect computer \mathbf{u} to computer \mathbf{v} using an AcidNet cable of bandwidth \mathbf{w}. Computers are numbered starting at 0 .

If there is no solution, print "Impossible".

100	011
3	122
011	Case \#3: 0
102	Case \#4: Impossible
120	
1	
0	
4	
0221	
2022	
2202	
1220	

Problemsetter: Igor Naverniouk
Special Thanks: Per Austrin

