

Let $\mathbf{K}_{\mathbf{n}}$ denote the complete undirected graph with n vertices where n is an even number. In other words, $\mathbf{K}_{\mathbf{n}}$ is a graph with n vertices where every two vertices are connected. Your task is to find the maximum number of spanning trees of $\mathbf{K}_{\mathbf{n}}$ that can be formed in such a way that no two of these spanning trees have a common edge.

Input

Each test case will have an even integer $\mathbf{n}(\mathbf{2} \leq \mathbf{n} \leq \mathbf{4 0 0})$, the number of vertices. The last test case will be followed by a single 0 denoting end of input.

Output

For each test case, print a line in the format, "Case X : Y ", where X is the case number \& Y is the maximum possible number of spanning trees.

Sample Input Output for Sample Input

4	Case 1: 2
0	

Problemsetter: Mohammad Mahmudur Rahman
Special Thanks to: Manzurur Rahman Khan

