

SH and TR are playing the famous brick game. For those who aren't aware of the rules of this illustrious game, here goes a brief description:

- It's a two player game in which there is initially some number of bricks on a table.
- Each player moves alternately. Player $\mathbf{1}$ makes the first move. In our case, SH is player $\mathbf{1}$.
- In each move, a player removes some number of bricks from the table. The number of bricks that can be removed in a single move must be a member of a certain set of \mathbf{K} numbers.
- The player to remove the last brick wins the game. If a player finds that he can't make any valid move in his turn, he loses the game.

Both SH and TR have recently spent a lot of time working out at the gym. They have acquired enough strength to lift a lot of bricks in a single move. However, the bricks that they are playing with are quite heavy and in a single move a player can remove at most 20 bricks from the table.

The set, thus, can be represented as $\mathbf{S}=\left\{\mathbf{0}<\mathbf{A}_{\mathbf{1}}<\mathbf{A}_{\mathbf{2}}<\mathbf{A}_{\mathbf{3}}<\ldots<\mathbf{A}_{\boldsymbol{K}-\mathbf{1}}<\mathbf{A}_{\boldsymbol{K}}<\mathbf{2 1}\right\}$
You will be given a string consisting of \mathbf{N} characters. The $\mathbf{i}^{\mathbf{t h}}(\mathbf{1} \leq \mathbf{i} \leq \mathbf{N})$ character represents the state if there were initially \mathbf{i} bricks. A state is symbolized by \mathbf{L} or \mathbf{W} and they represent losing states and winning states, respectively. The states are calculated based on the fact that both of them play perfectly. For example, if the $10^{\text {th }}$ character of the given string is \mathbf{L}, then no matter what strategy $\mathbf{S H}$ follows he will always end up losing if they start with 10 bricks.

Given the states, your job is to minimize the cardinality of the set \mathbf{S}; that is you have to minimize the value of \mathbf{K}. Note that the set cannot be empty. You will also need to find the members of the set \mathbf{S}. In case there are multiple sets with the same minimum cardinality that satisfies the given states, you have to select the one that comes lexicographically earliest. Set $\mathbf{S} \mathbf{1}$ will come earlier than $\mathbf{S 2}$, if in the first differing element $\mathbf{S 1}$'s corresponding value has a lesser magnitude. Example: $(1,3,6)$ will come before (1, 4, 5).

Input

The first line of input is an integer $\mathbf{T}(\mathbf{T}<\mathbf{2 0 1})$ that indicates the number of test cases. Each of the next \mathbf{T} lines contains a string consisting of characters \mathbf{L} and \mathbf{W} only. The length of a string is at most $\mathbf{1 0 0}$.

Output

For each case, output the case number first. Then output the set of \mathbf{K} elements in ascending order based on the description given above. It is guaranteed that there will be at least 1 set of numbers that will yield the given states in the input.

Problemsetter: Sohel Hafiz
Special Thanks: Md. Arifuzzaman Arif

