Problem E
 Square

Input: Standard Input
Output: Standard Output
Given \mathbf{n} integers you can generate $\mathbf{2}^{\mathbf{n}} \mathbf{- 1}$ non-empty subsets from them. Determine for how many of these subsets the product of all the integers in that is a perfect square. For example for the set $\{4,6,10,15\}$ there are 3 such subsets. $\{4\},\{6,10,15\}$ and $\{4,6,10,15\}$. A perfect square is an integer whose square root is an integer. For example $1,4,9,16, \ldots \ldots$.

Input

Input contains multiple test cases. First line of the input contains $\mathbf{T}(\mathbf{1} \leq \mathbf{T} \leq \mathbf{3 0})$ the number of test cases. Each test case consists of 2 lines. First line contains $\mathbf{n}(\mathbf{1} \leq \mathbf{n} \leq \mathbf{1 0 0})$ and second line contains \mathbf{n} space separated integers. All these integers are between 1 and $10 \wedge 15$. None of these integers is divisible by a prime greater than 500 .

Output

For each test case output is a single line containing one integer denoting the number of non-empty subsets whose integer product is a perfect square. The input will be such that the result will always fit into signed 64 bit integer.

Sample Input

Problemsetter: Abdullah al Mahmud
Special Thanks to: Manzurur Rahman Khan

