Problem F
 Permutation
 Input: Standard Input
 Output: Standard Output

Given N and K find the N 'th permutation of the integers from 1 to K when those permutations are lexicographically ordered. N starts from 0 . Since N is very large N will be represented by a sequence of K non-negative integers $S_{1}, S_{2}, \ldots, S_{k}$. From this sequence of integers N can be calculated with the following expression.

$$
\Sigma_{1}^{2} S \mathrm{Si} *(K-t)!
$$

Input

First line of the input contains $\mathrm{T}(\leq 10)$ the number of test cases. Each of these test cases consists of 2 lines. First line contains a integer $\mathrm{K}(1 \leq \mathrm{K} \leq 50000)$. Next line contains K integers $\mathrm{S}_{1}, \mathrm{~S}_{2}, \ldots$, $\mathrm{S}_{\mathrm{k}}\left(0 \leq \mathrm{S}_{\mathrm{i}} \leq \mathrm{K}-\mathrm{i}\right)$.

Output

For each test case output contains N'th permutation of the integers from 1 to K. These K integers should be separated by a single space.

Sample Input	Output for Sample Input
4	321
3	213
210	3241
3	2431
100	
4	
2110	
4	
1210	

Problemsetter: Abdullah al Mahmud
Special Thanks: Manzurur Rahman Khan

