Problem C
 Pyramid Number

Input: Standard Input
Output: Standard Output
A group of archaeologists have come across a new kind of number pattern while analyzing the hieroglyphs patterns in 'The not so great pyramid'. They have decided to call these numbers 'Pyramid numbers'.

A number \mathbf{n} is called a Pyramid number if we can partition \mathbf{n} into \mathbf{k} positive integers $\mathbf{x}_{\mathbf{i}}(1<=\mathrm{i}<=\mathrm{k})$ such that $\sum_{i=1}^{k} \frac{1}{x_{i}}=1$. For example, $1=\frac{1}{2}+\frac{1}{2}$
So, $4(2+2)$ is a Pyramid number.
A number \mathbf{n} is called a Strictly Pyramid number if we can partition \mathbf{n} into \mathbf{k} distinct positive integers $\mathbf{x}_{\mathbf{i}}(1 \leq \mathrm{i} \leq \mathrm{k})$ such that $\sum_{i=1}^{k} \frac{1}{x_{i}}=1$. For example, $1=\frac{1}{2}+\frac{1}{3}+\frac{1}{6}$
Here, $11(2+3+6)$ is Strictly Pyramid whereas in the above example, 4 is Pyramid but not Strictly Pyramid.

Given two positive integers a \& b, find the number of Strictly Pyramid numbers between $\mathbf{a} \& \mathbf{b}$ (inclusive).

Input

The first line of the input file will contain an integer \mathbf{T} ($\mathbf{T}<=100$), the number of test cases. Each of the following \mathbf{T} lines will be consisting of 2 integers $\mathbf{a} \& \mathbf{b}(1 \leq \mathbf{a}, \mathbf{b} \leq$ 1000000).

Output

For each test case, print an integer which is the number of Strictly Pyramid numbers between $\mathbf{a} \& \mathbf{b}$ (inclusive).

Sample Input
Output for Sample Input

5	1
1	10
111	2
1	100
7080	8
110120	11

Problemsetter: Mohammad Mahmudur Rahman
Special Thanks to: Igor Naverniouk

