## Problem C Pyramid Number

Input: Standard Input Output: Standard Output

A group of archaeologists have come across a new kind of number pattern while analyzing the hieroglyphs patterns in 'The not so great pyramid'. They have decided to call these numbers 'Pyramid numbers'.



A number **n** is called a Pyramid number if we can partition **n** into **k** positive integers  $x_i$  (1<=i<=k) such

that  $\sum_{i=1}^{k} \frac{1}{x_i} = 1$ . For example,  $1 = \frac{1}{2} + \frac{1}{2}$ So, 4 (2 + 2) is a Pyramid number.

A number **n** is called a Strictly Pyramid number if we can partition **n** into **k** distinct

positive integers  $\mathbf{x}_i$  ( $1 \le i \le k$ ) such that  $\sum_{i=1}^k \frac{1}{x_i} = 1$ . For example,

$$1 = \frac{1}{2} + \frac{1}{3} + \frac{1}{6}$$

Here, 11 (2 + 3 + 6) is Strictly Pyramid whereas in the above example, 4 is Pyramid but not Strictly Pyramid.

Given two positive integers **a** & **b**, find the number of Strictly Pyramid numbers between **a** & **b** (inclusive).

## Input

The first line of the input file will contain an integer **T** (T<=100), the number of test cases. Each of the following **T** lines will be consisting of 2 integers **a** & **b** ( $1 \le a, b \le 1000000$ ).

## Output

For each test case, print an integer which is the number of Strictly Pyramid numbers between  $\mathbf{a} \& \mathbf{b}$  (inclusive).

| Sample Input | Output for Sample Input |
|--------------|-------------------------|
| 5            | 1                       |
| 1 10         | 2                       |
| 1 11         | 53                      |
| 1 100        | 8                       |
| 70 80        | 11                      |
| 110 120      |                         |

Problemsetter: Mohammad Mahmudur Rahman Special Thanks to: Igor Naverniouk