

A puzzle from the 1962 International Mathematics Olympiad: "We have a number (integer) with 6 as the last (right-most) digit (936 for example). If we erase the 6 and put it on the left end of the number (693 in our example), then we have a number four times our original number. We see that 936 doesn't work. What is the smallest number that does fit the above conditions?"

For this problem, we slightly generalize this puzzle:
"We have an \mathbf{N}-base number (integer) with \mathbf{X} as the last (right-most) digit. If we erase the \mathbf{X} and put it on the left end of the number, then we have another \mathbf{N}-base number which is \mathbf{Y} times our original number. Given \mathbf{N} (in [2, 256]), \mathbf{X} and \mathbf{Y}, what is the smallest number that does fit the above conditions?"

Input

There will be no more than 1000 cases. Each test case will consist of exactly three integers in a line, giving the values of \mathbf{N}, \mathbf{X} and \mathbf{Y} respectively.

Output

For each case, print the case number, followed by the digits in the target number, each digit seperated by a single space. If there is no solution, print a message 'No solution' for that case.

Sample Input

106
10
3
3
123
31

Output for Sample Input
Case 1: 153846
Case 2: 3
Case 3: $10 \quad 44 \quad 55 \quad 100 \quad 74 \quad 65 \quad 103 \quad 116$
$\begin{array}{lllllllllll}79 & 108 & 77 & 25 & 90 & 71 & 23 & 89 & 111 & 119 & 39\end{array}$
$\begin{array}{llllllllllll}95 & 31 & 92 & 71 & 105 & 117 & 39 & 13 & 4 & 42 & 55 & 18\end{array}$
$\begin{array}{llllllllllll}47 & 15 & 87 & 29 & 9 & 85 & 28 & 50 & 57 & 101 & 33 & 93\end{array}$
31

Problemsetter: Sadrul Habib Chowdhury
Special Thanks: Mohammad Mahmudur Rahman, Manzurur Rahman Khan, Sabbir Yousuf, Arifuzzaman

