	Hessas Input: Standard Input Output: Standard Output	acm

Ampang Communications \& Mobile (ACM) provides telecom services for various types of users. Since the people of Ampang are quite talkative, they are always seeking for packages that are best suited for them. To have an edge over their competitors, ACM provides various packages. Two of the most popular packages are:

- Mile
- Juice

Mile charges every $\mathbf{3 0}$ seconds at a rate of $\mathbf{1 0}$ cents. That means if you talk for $\mathbf{2 9}$ seconds or less, you will be charged with $\mathbf{1 0}$ cents. If you talk for $\mathbf{3 0}$ to $\mathbf{5 9}$ seconds, you will be charged with $\mathbf{2 0}$ cents and so on.

Juice charges every $\mathbf{6 0}$ seconds at a rate of $\mathbf{1 5}$ cents. That means if you talk for $\mathbf{5 9}$ seconds or less, you will be charged with $\mathbf{1 5}$ cents. Similarly, if you talk for $\mathbf{6 0}$ seconds to $\mathbf{1 1 9}$ seconds, you will be charged with $\mathbf{3 0}$ cents and so on.

Given a list of call durations, can you determine the package that is cheaper?

Input

The first line of input is an integer $\mathbf{T}(\mathbf{T} \mathbf{5 0})$ that denotes the total number of test cases. Each case starts with a line containing an integer $\mathbf{N}(\mathbf{0}<\mathbf{N}<\mathbf{2 0})$. The next line gives a list of \mathbf{N} call durations (In second). Each call duration is an integer in the range [1, 2000]. Consecutive integers are separated by a single space character.

Output

For each case, output the case number first. Then output the name of the cheaper package followed by the corresponding cost in cents. If both package gives the same total cost, then output both the names (Mile preceding Juice) followed by the cost. Look at the output for sample input for details.

Sample Input

3	
2	
61	10
3	
404040	
2	
6065	

Output for Sample Input
Case 1: Mile 40
Case 2: Juice 45
Case 3: Mile Juice 60

Problem setter: Sohel Hafiz, Special Thanks: Shamim Hafiz, Rujia Liu
Illustration: Case 1: $\operatorname{Mile}(30+10=40) \& J u i c e(30+15=45)$. Case 2: Mile(20+20+20=60) \& J uice $(15+15+15=45)$. Case 3: $\operatorname{Mile}(30+30=60) \& J$ uice $(30+30=60)$.

