Problem D DNA Subsequences

Source file name: sequence.c, sequence.cpp or sequence.java

Thomas, a computer scientist that works with DNA sequences, needs to compute longest common subsequences of given pairs of strings. Consider an alphabet Σ of letters and a word $w = a_1 a_2 \cdots a_r$, where $a_i \in \Sigma$, for $i = 1, 2, \ldots, r$. A **subsequence** of w is a word $x = a_{i_1} a_{i_2} \cdots a_{i_s}$ such that $1 \le i_1 < i_2 < \ldots < i_s \le r$. Subsequence x is a **segment** of w if $i_{j+1} = i_j + 1$, for $j = 1, 2, \ldots, s - 1$. For example the word **ove** is a segment of the word **lovely**, whereas the word **loly** is a subsequence of **lovely**, but not a segment.

A word is a *common subsequence* of two words w_1 and w_2 if it is a subsequence of each of the two words. A *longest common subsequence* of w_1 and w_2 is a common subsequence of w_1 and w_2 having the largest possible length. For example, consider the words $w_1 = lovxxelyxxxxx$ and $w_2 = xxxxxxxlovely$. The words $w_3 = lovely$ and $w_4 = xxxxxxx$, the latter of length 7, are both common subsequences of w_1 and w_2 . In fact, w_4 is their longest common subsequence. Notice that the empty word, of length zero, is always a common subsequence, although not necessarily the longest.

In the case of Thomas, there is an extra requirement: the subsequence must be formed from common segments having length K or more. For example, if Thomas decides that K=3, then he considers lovely to be an acceptable common subsequence of lovxxelyxxxxx and xxxxxxxlovely, whereas xxxxxxx, which has length 7 and is also a common subsequence, is not acceptable. Can you help Thomas?

Input

The input contains several test cases. The first line of a test case contains an integer K representing the minimum length of common segments, where $1 \le K \le 100$. The next two lines contain each a string on lowercase letters from the regular alphabet of 26 letters. The length ℓ of each string satisfies the inequality $1 \le \ell \le 10^3$. There are no spaces on any line in the input. The end of the input is indicated by a line containing a zero.

The input must be read from standard input.

Output

For each test case in the input, your program must print a single line, containing the length of the longest subsequence formed by consecutive segments of length at least K from both strings. If no such common subsequence of length greater than zero exists, then $\tt 0$ must be printed.

The output must be written to standard output.

Sample input	Output for the sample input
3	6
lovxxelyxxxxx	7
xxxxxxxlovely	10
1	0
lovxxelyxxxxx	
xxxxxxxlovely	
3	
lovxxxelxyxxxx	
xxxlovelyxxxxxxx	
4	
lovxxxelyxxx	
xxxxxxlovely	
0	