

Two players, \mathbf{S} and \mathbf{T}, are playing a game where they make alternate moves. \mathbf{S} plays first. In this game, they start with an integer \mathbf{N}. In each move, a player removes one digit from the integer and passes the resulting number to the other player. The game continues in this fashion until a player finds he/she has no digit to remove when that player is declared as the loser.

With this restriction, it's obvious that if the number of digits in \mathbf{N} is odd then \mathbf{S} wins otherwise \mathbf{T} wins. To make the game more interesting, we apply one additional constraint. A player can remove a particular digit if the sum of digits of the resulting number is a multiple of 3 or there are no digits left.

Suppose $\mathbf{N}=1234$. \mathbf{S} has 4 possible moves. That is, he can remove $1,2,3$, or 4 . Of these, two of them are valid moves.

- Removal of 4 results in 123 and the sum of digits $=1+2+3=6 ; 6$ is a multiple of 3 . - Removal of 1 results in 234 and the sum of digits $=2+3+4=9$; 9 is a multiple of 3 . The other two moves are invalid.

If both players play perfectly, who wins?

Input

The first line of input is an integer $\mathbf{T}(\mathbf{T}<60)$ that determines the number of test cases. Each case is a line that contains a positive integer \mathbf{N}. \mathbf{N} has at most 1000 digits and does not contain any zeros.

Output

For each case, output the case number starting from 1. If S wins then output 'S' otherwise output 'T'.

Sample Input

4
33
771

Output for Sample Input
Case 1: S
Case 2: T
Case 3: T

Problem Setter: Sohel Hafiz
Special Thanks: Shamim Hafiz, Md. Arifuzzaman Arif

