

Arrange the Numbers

Consider this sequence $\{1, 2, 3, ..., N\}$, as a initial sequence of first **N** natural numbers. You can rearrange this sequence in many ways. There will be **N!** different arrangements. You have to calculate the number of arrangement of first **N** natural numbers, where in first **M** (M<=N) positions, exactly **K** (K<=M) numbers are in its initial position.

Example:

For, N = 5, M = 3, K = 2

You should count this arrangement {1, 4, 3, 2, 5}, here in first 3 positions 1 is in 1st position and 3 in 3rd position. So exactly 2 of its first 3 are in there initial position.

But you should not count this $\{1, 2, 3, 4, 5\}$.

Input

The first line of input is an integer $T(T \le 1000)$ that indicates the number of test cases. Next T line contains 3 integers each, $N(1 \le N \le 1000)$, M, and K.

Output

For each case, output the case number, followed by the answer modulo **1000000007**. Look at the sample for clarification.

Sample Input

Output for Sample Input

1	Case 1: 12
5 3 2	

Problem Setter: Md. Arifuzzaman Arif

Special Thanks: Abdullah Al Mahmud, Jane Alam Jan