

A polygon is a plane figure that is bounded by a closed path and composed of a finite sequence of straight line segments. These segments are called its edges, and the points where two edges meet are the polygon's vertices.

You have got a set of m sticks of various lengths. How many ways can you choose k sticks from this set and form a polygon with k sides by joining the end points.

Input

The first line of input is an integer $\mathbf{T}(\mathbf{T}<\mathbf{1 0 0})$ that indicates the number of test cases. Each case starts with a line containing 2 positive integers \mathbf{N} and $\mathbf{K}(\mathbf{3} \leq \mathbf{N} \leq \mathbf{3 0} \& \mathbf{3} \leq \mathbf{K} \leq \mathbf{N})$. The next line contains \mathbf{N} positive integers in the range $\left[\mathbf{1}, \mathbf{2}^{\wedge} \mathbf{3 1}\right.$), which represents the lengths of the available sticks. The integers are separated by a single space.

Output

For each case, output the case number followed by the number of valid polygons that can be formed by picking k sticks from the given n sticks.

Sample Input

```
4
4 3
10 10 20 20
64
1
4 3
10 20 30 100000000
6}
2 3 4 5 6 7
```

Output for Sample Input
Case 1: 2
Case 2: 15
Case 3: 0
Case 4: 1

Problem Setter: Sohel Hafiz
Special Thanks: Md. Arifuzzaman Arif

