

The 2008 **Al-khawarizmi** Programming Competition Hosted by International Islamic University, Malaysia

Count the Polygons

Input: Standard Input
Output: Standard Output

A polygon is a plane figure that is bounded by a closed path and composed of a finite sequence of straight line segments. These segments are called its edges, and the points where two edges meet are the polygon's vertices.

You have got a set of n sticks of various lengths. How many ways can you choose n sticks from this set and form a polygon with n sides by joining the end points.

Input

The first line of input is an integer T (T<100) that indicates the number of test cases. Each case starts with a line containing 2 positive integers N and K ($3 \le N \le 30 \& 3 \le K \le N$). The next line contains N positive integers in the range [1, 2^31), which represents the lengths of the available sticks. The integers are separated by a single space.

Output

For each case, output the case number followed by the number of valid polygons that can be formed by picking κ sticks from the given κ sticks.

Sample Input

Output for Sample Input

4	Case 1: 2
4 3	Case 2: 15
10 10 20 20	Case 3: 0
6 4	Case 4: 1
1 1 1 1 1 1	
4 3	
10 20 30 100000000	
6 6	
2 3 4 5 6 7	

Problem Setter: Sohel Hafiz

Special Thanks: Md. Arifuzzaman Arif