Even Parity

Input: Standard Input
Output: Standard Output

We have a grid of size n X . Each cell of the grid initially contains a zero(0) or a one(1).
The parity of a cell is the number of 1 s surrounding that cell. A cell is surrounded by at most 4 cells (top, bottom, left, right).

Suppose we have a grid of size 4×4 :

1	0	1	0
1	1	1	1
0	1	0	0
0	0	0	0

The parity of each cell would be

$$
\begin{array}{|l|l|l|l|}
\hline 1 & 3 & 1 & 2 \\
\hline 2 & 3 & 3 & 1 \\
\hline 2 & 1 & 2 & 1 \\
\hline 0 & 1 & 0 & 0 \\
\hline
\end{array}
$$

For this problem, you have to change some of the 0 s to 1 s so that the parity of every cell becomes even. We are interested in the minimum number of transformations of 0 to 1 that is needed to achieve the desired requirement.

Input

The first line of input is an integer $\mathbf{T}(\mathbf{T}<\mathbf{3 0})$ that indicates the number of test cases. Each case starts with a positive integer $\mathbf{N}(\mathbf{1} \leq \mathbf{N} \leq \mathbf{1 5})$. Each of the next \mathbf{N} lines contain \mathbf{N} integers (0/1) each. The integers are separated by a single space character.

Output

For each case, output the case number followed by the minimum number of transformations required. If it's impossible to achieve the desired result, then output -1 instead.

Sample Input

3		
3		
0	0	0
0	0	0
0	0	0
3		
0	0	0
1	0	0
0	0	0
3		
1	1	1
1	1	1
0	0	0

Output for Sample Input
Case 1: 0
Case 2: 3
Case 3: -1

