Problem D
 The Base-1 Number System
 Input: Standard Input
 Output: Standard Output

As we know, in an n-based number system, there are n different types of digits. In this way, a 1 -based number system has only 1 type of digit, the ' 0 '. Here are the rules to interpret 1 -based numbers. Each number consists of some space separated blocks of 0 . A block may have 1,2 or more 0 s. There is a 'flag' variable associated with each number

- A block with a single 0 sets 'flag' variable to 1
- A block with two 0 s sets the 'flag' to 0
- If there are $n(n>2) 0$ s in a block, $n-2$ binary digits with the current value of flag is appended to your number.
Note that, the first block of every number will have at most 20 s. For example, the 1base number 000000000000000 is equivalent to binary 11011.
- $1^{\text {st }}$ block sets the flag to 1
- $2^{\text {nd }}$ block has 40 s. So append flag(=1) $4-2=2$ times (11).
- $3^{\text {rd }}$ block has 20 s. Set the flag to 0
- $4^{\text {th }}$ block has 30 s . Append flag(=0) 3-2 $=1$ time (110).
- $5^{\text {th }}$ block has a single 0 . Set flag $=1$
- $6^{\text {th }}$ and block has 40 s. Append flag(=0) 4-2=2 times (11011).

The final binary number won't have more than 30 digits. Once, you've completed the process, convert the binary value to decimal \& print, you're done!

Input

Input will have at most 100 test cases. Each case consists of a 1-based number as described above. A number may be spanned to multiple lines but a single block will always be in a single line. Termination of a case will be indicated by a single '\#' char which will be space-separated from the last digit of your input number. The last case in the input is followed by a ' \sim ' character indicating, end of input.

Output

For each test case, output a single line with the decimal equivalent value of your given 1-based number.
Sample Input Output for Sample Input

$000000000000000 \#$	27
$00000 \#$	
\sim	

