Problem A
 Sigma Function
 Input: Standard Input
 Output: Standard Output

Sigma function is an interesting function in Number Theory. It is denoted by the Greek letter Sigma (σ). This function actually denotes the sum of all divisors of a number. For example $\sigma(24)=$ $1+2+3+4+6+8+12+24=60$. Sigma of small numbers is easy to find but for large numbers it is very difficult to find in a straight forward way. But mathematicians have discovered a formula to find sigma. If the prime power decomposition of an integer $n=p_{1}^{e_{1}} * p_{2}^{e_{2}} * p_{3}^{e_{3}} * \ldots * p_{n-1}^{e_{n-1}} * p_{n}^{e_{n}}$, then
$\sigma(n)=\frac{p_{1}^{e_{1}+1}-1}{p_{1}-1} * \frac{p_{2}^{e_{2}+1}-1}{p_{2}-1} * \frac{p_{3}^{e_{3}+1}-1}{p_{3}-1} * \ldots * \frac{p_{n-1}^{e_{n-1}+1}-1}{p_{n-1}-1} * \frac{p_{n}^{e_{n}+1}-1}{p_{n}-1}$
For some n the value of $\sigma(\mathrm{n})$ is odd and for others it is even. Given a value n , you will have to find how many integers from 1 to n have even value of σ.

Input

The input file contains at most 100 lines of inputs.
Each line contains an integer $\mathrm{N}(0<\mathrm{N}<1000000000001)$.
Input is terminated by a line containing a single zero. This line should not be processed.

Output

For each line of input produce one line of output. This line denotes how many numbers between 1 and N (inclusive) has even value of function σ.

Sample Input	Output for Sample Input
3	1
10	5
1000	947
0	

0
Problemsetter: Shahriar Manzoor

