Problem E Elegant Strings

Time Limit: 4 Second

A subsequence of a string $T=t_{0} t_{1} t_{2} \ldots \mathrm{t}_{\mathrm{n}-1}$ is $\mathrm{T}^{\prime}=\mathrm{t}_{\mathrm{i} 0} \mathrm{t}_{\mathrm{i} 1} \ldots \mathrm{t}_{\mathrm{im}}$ where $\mathrm{i}_{0}<\mathrm{i}_{1}<\ldots \mathrm{i}_{\mathrm{m}}$ and $\mathrm{m}<\mathrm{n}$.

A substring of a string is a subsequence of the string where every element is consecutive.

You will be given a string S. P is the set of all the distinct substrings of S of length 2. Now the elegancy of each element of P is the square of the index (1-based) in S of the first letter of that substring. If a substring occurs multiple times only the first occurrence should be considered for the elegancy. Suppose, $S=$ abcabd. This means P is consisted of the substrings $a b, b c$, ca and bd. And the elegancies of those substrings are $1,4,9$ and 25 respectively.

Now you will be given another string T. You have to split T to minimum amount of strings such that every string is a subsequence of T , any of the strings should not contain any substrings of length 2 which don't belong to P. Every character of T should belong to exactly one string. If multiple ways to divide T to minimum amount of strings, you have to consider that which minimizes the total elegancy of all the strings. Elegancy of a string is the sum of elegancy of all the length 2 substrings of that string. For a one letter string the elegancy is 0 . Total elegancy is the sum of elegancy of all the strings.

Let's say, $\mathrm{S}=\mathrm{abcabd}$ and $\mathrm{T}=\mathrm{bcadzb}$. One of the valid ways to split T is: $\{\mathrm{bc}, \mathrm{ab}, \mathrm{d}, \mathrm{z}\}$. Note that $\{a c b, d$, $\mathrm{z}, \mathrm{b}\}$ is not a valid way because "acb" is not a subsequence in T . Also $\{\mathrm{cab}, \mathrm{bdz}\}$ is not a valid way either because the string "bdz" contains "dz" which don't belong to P although all the elements are subsequences. Now the optimal subsequences for this are $\{b c a b, z, d\}$ which has total elegancy of ($14+$ $0+0)=14$. For this case you can't split T to less than 3 subsequences and with 3 subsequences it is the minimal total elegancy.

Input:

First line of the input contains a number X , the number of test cases which is at most 20 . Each case starts with S. The next line contains T. Both S, T contains only lowercase letters. S consists of at most 1000 characters and T consists of at most 100 characters. There won't be any blank lines between two lines.

Output:

You have to output two numbers K and C separated by a space where K is the minimum amount of strings possible by splitting T according to the above rules and C is the minimum total elegancy.

SAMPLE INPUT
 OUTPUT FOR SAMPLE INPUT

1
abcabd
bcadzb

Problemsetter: Tasnim Imran Sunny Special Thanks To: Simon Lo

