Time Limit: 1 sec
Memory Limit: 16MB
A generalization of the factorials gives us multifactorials:
n! = n*(n-1)*(n-2)*(n-3)...
n!! = n*(n-2)*(n-4)*(n-6)...
n!!! = n*(n-3)*(n-6)*(n-9)...
In general (there are k marks '!'):
n!!...! = n*(n-k)*(n-2k)...(n mod k), if k doesn't divide n,
n!!...! = n*(n-k)*(n-2k)...k, if k divides n
It this problem you are given a multifactorial, and you have to find the number of different dividers it has.
!'.
Case i: a". Where "i" is a
test number, and "a" is the number of dividers in multifactorial. If number of
dividers exceed 1018 print "Infinity" (see examples).
3
5!
13!!
230!
Case 1: 16
Case 2: 64
Case 3: Infinity
Problem setters: Aleksej Viktorchik, Leonid Shishlo.
Huge Easy Contest #1