Problem A
 Attacker
 Input: Standard Input
 Output: Standard Output

There are k attackers in an $\mathrm{n} * \mathrm{~m}$ chessboard.
The i-th attacker is located in $\left(\mathrm{X}_{\mathrm{i}}, \mathrm{Y}_{\mathrm{i}}\right)$, with a attacking range of R_{i}.
A square (X, Y) is attacked by the i-th attacker if and only if $\left|X-X_{i}\right|+\left|Y-Y_{i}\right|<=R_{i}$.
Count the number of squares on the chessboard attacked by at least one attacker.

Input

There are several input cases. The first line contains three integers $\mathrm{n}, \mathrm{m}, \mathrm{k}(1 \leq \mathrm{n}, \mathrm{m} \leq 100000000,1 \leq \mathrm{k}$ $\leq 20000)$. In the following k lines, each line contains three integers $X_{i}, Y_{i}, R_{i}\left(1 \leq X_{i} \leq n, 1 \leq Y_{i} \leq m\right.$, $1 \leq \mathrm{R}_{\mathrm{i}} \leq 1000000$), the position and attack range of each attacker.

The last case is followed by a single zero, which should not be processed.

Output

For each case, print the case number and the answer.

Sample Input	Sample Output	
4	4	3
1	1	1
3	1	1
3	3	1
1	10	1
1	1	1
0	Case 1: 10	

Problemsetter: Chen Qifeng Supplied by: Rujia Liu

