Problem A

ALTERNATIVE ARBORECSENCE

Given a graph, we define "proper coloring" as coloring of the graph nodes in such way that no two adjacent nodes have the same color. If we map each color to a positive integer, we can calculate the sum of all colors assigned to the graph.

In this problem you will be given a tree (connected graph with no simple loops). Can you determine what the minimum color sum can be achieved when the tree is properly colored? (Image to the right shows a proper coloring of the second example tree with sum=11)

Input

The input file consists of several test cases. Each test case starts with $n(1 \leq n \leq 10000)$, the number of nodes in the tree. Next n lines will be of the form " $u: v 1 v 2 \ldots v k$ " where u is the root of a subtree and $v i$'s are its children $(0 \leq u, v i \leq n-1)$.

Every test case will be followed by a blank line. Input ends with a case $n=0$, which should not be processed.

Output

For each test case print the minimum sum of colors that can be achieved by some proper coloring of the tree.

Sample Input

```
8
0: 1 2 3
1: 4 5
2:
3: 6 7
4:
5:
6:
7:
0
Output for the Sample Input
3
11
```

Darko Aleksic, October 2007

