Problem G

 Equations

 Equations
 Input: Standard Input
 Output: Standard Output

Find the number of solutions, the equation $\sum \mathbf{X}_{\mathbf{i}}=\mathbf{s}$ have, if $\mathbf{A}_{\mathbf{i}} \leq \mathbf{X}_{\mathbf{i}} \leq \mathbf{B}_{\mathbf{i}}$ for each $\mathbf{i}=\mathbf{1} \ldots \mathbf{n}$.
For example,

$$
\begin{aligned}
& X_{1}+X_{2}+X_{3}=10 \\
& -1 \leq X_{1} \leq 3 \\
& 2 \leq X_{2} \leq 4 \\
& 6 \leq X_{3} \leq 7
\end{aligned}
$$

The above set of equations has 6 solutions. They are: $\{1,4,7\},\{0,3,7\},\{0,4,6\},\{1,2,7\}$, $\{1,3,6\}$ and $\{2,2,6\}$.

You are given \mathbf{n} the number of variables and the range of them. Your task is to calculate the number of solutions of that equation.

Input:

First line of the Input contains $\mathbf{T} \mathbf{(\mathbf { 5 0 })}$ the number of test cases. Then \mathbf{T} test cases follow. First line of each test case contains 2 integer $\mathbf{n}(\mathbf{1} \leq \mathbf{n} \leq \mathbf{1 0})$ and $\mathbf{s}(\mathbf{- 5 0 0 0 0} \leq \mathbf{s} \leq \mathbf{5 0 0 0 0})$. Next \mathbf{n} lines each contain 2 integers describing the range of each variable. The $i^{\text {th }}$ line $\mathbf{A}_{\mathbf{i}}$ and $\mathbf{B}_{\mathbf{i}}$ $\left.\mathbf{(- 1 0 0 0 0} \leq \mathbf{A}_{\mathbf{i}} \leq \mathbf{B}_{\mathbf{i}} \leq \mathbf{1 0 0 0 0}\right) . \mathbf{X}_{\mathbf{i}}$ can take any integral value in the range $\left[\mathbf{A}_{\mathrm{i}}, \mathbf{B}_{\mathbf{i}}\right]$.

Output:

For each test case output contains one integer denoting the number of solutions of the given equations. Output the value modulo 200003.

Sample Input	Sample Output
1	6
3	10
-1	3
24	
67	

Problemsetter: Abdullah Al Mahmud
Special Thanks To: Istiaque Ahmed \& Mohammad Mahmudur Rahman

