Problem D
 Nested Rectangles

Input: Standard Input

Output: Standard Output
Sultan has a rectangle of \mathbf{R} rows and \mathbf{C} columns. Each cell of this rectangle contains an integer. Sultan chooses n subrectangles. The i'th subrectangle has $\mathbf{R i}$ rows and $\mathbf{C i}$ columns and it is nested inside (i-1)'th subrectangle. The first subrectangle is nested inside the initial rectangle. Sultan then multiplies all the integers outside the first subrectangle with $\mathbf{M}_{\mathbf{0}}$. Then he multiplies all the integers inside i'th rectangle but outside (i+1)'th rectangle with $\mathbf{M}_{\mathbf{i}}$. Then he multiples all the integers inside n'th subrectangle with $\mathbf{M}_{\mathbf{n}}$. So he get a new rectangle of integers. The sum of all the integers of this new rectangle is \mathbf{S}. Help Sultan to choose all this subrectangles in such a way so that \mathbf{S} is maximized.

In the above figure, the outer most portion (that is not contained in any of the sub rectangle) is multiplied by \mathbf{M}_{0}, the portion inside the first rectangle, but outside the second one by \mathbf{M}_{1}, portion inside $2^{\text {nd }}$ and outside $3^{\text {rd }}$ by \mathbf{M}_{2}, and so forth. The portion inside the N th sub rectangle is multiplied by $\mathbf{M}_{\mathbf{n}}$.

Input:

First line of the input contains $\mathbf{T}(\leq \mathbf{2 0})$ the number of test cases. First line of the each test case contains 3 integers $\mathbf{R}(\mathbf{1} \leq \mathbf{R} \leq \mathbf{5 0 0}), \mathbf{C}(\mathbf{1} \leq \mathbf{C} \leq \mathbf{5 0 0})$ and $\mathbf{n}(\mathbf{1} \leq \mathbf{n} \leq \mathbf{5})$. Second line contains \mathbf{n} integers $\mathbf{R}_{1}, \mathbf{R}_{2} \ldots, \mathbf{R}_{\mathbf{n}}\left(\mathbf{R}>\mathbf{R}_{1}>\mathbf{R}_{2}>\ldots>\mathbf{R}_{\mathrm{n}}\right)$. Third line contains \mathbf{n} integers $\mathbf{C}_{1}, \mathbf{C}_{2}, \ldots, \mathbf{C}_{\mathbf{n}}(\mathbf{C}>$ $\left.\mathbf{C}_{1}>\mathbf{C}_{2}>\ldots>\mathbf{C}_{\mathbf{n}}\right)$. The values $\mathbf{R}_{\mathrm{i}}, \mathbf{C}_{\mathbf{i}}$ describes the dimensions of the $\mathrm{i}^{\text {th }}$ sub rectangle. Fourth line contains $\mathbf{n}+\mathbf{1}$ integers $\mathbf{M}_{\mathbf{0}}, \mathbf{M}_{\mathbf{1}}, \ldots, \mathbf{M}_{\mathbf{n}}\left(\mathbf{- 1 0} \leq \mathbf{M}_{\mathbf{i}} \leq \mathbf{1 0}\right)$, the values of each multiplier. Lines 5 to line $4+\mathrm{R}$ each contain \mathbf{C} integers. The $\mathrm{j}^{\text {th }}$ integer in the $(\mathrm{i}+4)^{\text {th }}$ line is the number in the $\mathrm{i}^{\text {th }}$ row and $\mathrm{j}^{\text {th }}$ column of the initial rectangle. All the integers in the initial rectangle is between 100 to +100 inclusive.

Output:

For each test case output contains one integer denoting the maximum value of \mathbf{S}.

Sample Input	Sample Output
1	22
662	
42	
31	
01 -1	
-1 $-1 \begin{array}{llllll} & -1 & -1 & -1 & -1\end{array}$	
$\begin{array}{lllllll}-1 & 2 & 2 & 2 & -1 & -1\end{array}$	
$\begin{array}{llllll}-1 & 2 & -1 & 2 & -1 & -1\end{array}$	
$\begin{array}{lllllll}-1 & 2 & -1 & 2 & -1 & -1\end{array}$	
$\begin{array}{lllllll}-1 & 2 & 2 & 2 & -1 & -1\end{array}$	
$\begin{array}{llllllll}-1 & -1 & -1 & -1 & -1 & -1\end{array}$	

Problemsetter: Abdullah Al Mahmud
Special Thanks To: Manzurur Rahman Khan

