Problem D

Nested Rectangles

Input: Standard Input **Output:** Standard Output

Sultan has a rectangle of R rows and C columns. Each cell of this rectangle contains an integer. Sultan chooses n subrectangles. The i'th subrectangle has Ri rows and Ci columns and it is nested inside (i-1)'th subrectangle. The first subrectangle is nested inside the initial rectangle. Sultan then multiplies all the integers outside the first subrectangle with M_0 . Then he multiplies all the integers inside i'th rectangle but outside (i+1)'th rectangle with M_i . Then he multiples all the integers inside n'th subrectangle with M_n . So he get a new rectangle of integers. The sum of all the integers of this new rectangle is S. Help Sultan to choose all this subrectangles in such a way so that S is maximized.

-1	<u>-1</u>	-1	-1	-1	-1	
-1	2	2	2	-1	-1	
-1	2	-1	2	-1	-1	
-1	2	-1	2	-1	-1	
-1	2	2	2	-1	-1	
-1	-1	-1	-1	 -1	-1	

In the above figure, the outer most portion (that is not contained in any of the sub rectangle) is multiplied by M_0 , the portion inside the first rectangle, but outside the second one by M_1 , portion inside 2^{nd} and outside 3^{rd} by M_2 , and so forth. The portion inside the N th sub rectangle is multiplied by M_n .

Input:

First line of the input contains $T(\leq 20)$ the number of test cases. First line of the each test case contains 3 integers $R(1\leq R\leq 500)$, $C(1\leq C\leq 500)$ and $R(1\leq n\leq 5)$. Second line contains $R_1, R_2, ..., R_n$ and $R_1, R_2, ..., R_n$. Third line contains $R_1, R_2, ..., R_n$. The values $R_1, R_2, ..., R_n$. The values of the $R_1, R_2, ..., R_n$ and $R_1, R_2, ..., R_n$. The values $R_1, R_2, ..., R_n$. The values of the $R_1, R_2, ..., R_n$. The values $R_1, R_2, ..., R_n$. The values of the $R_1, R_2, ..., R_n$. The values $R_1, R_2, ..., R_n$. The values of each multiplier. Lines 5 to line $R_1, R_2, ..., R_n$. The values of each multiplier. Lines 5 to line $R_1, R_2, ..., R_n$ and $R_1, ..., R_n$ integers in the $R_1, R_2, ..., R_n$. The values of each multiplier. Lines 5 to line $R_1, R_2, ..., R_n$ and $R_1, ..., R_n$ integers in the $R_1, R_2, ..., R_n$. The values of each multiplier. Lines 5 to line $R_1, R_2, ..., R_n$ integers. The $R_1, R_2, ..., R_n$ integers in the initial rectangle is between $R_1, R_2, ..., R_n$. The values $R_1, R_2, ..., R_n$ integers $R_1, R_2, ..., R_n$. The values $R_1, R_2, ..., R_n$ integers $R_1, R_2, ..., R_n$ integers $R_1, R_2, ..., R_n$. The values $R_1, R_2, ..., R_n$ integers $R_1, R_2, ..., R_n$ integers $R_1, R_2, ..., R_n$ integers $R_1, R_2, ..., R_n$.

Output:

For each test case output contains one integer denoting the maximum value of S.

Sample Input	Sample Output
1	22
6 6 2	
4 2	
3 1	
0 1 -1	
-1 -1 -1 -1 -1	
-1 2 2 2 -1 -1	
-1 2 -1 2 -1 -1	
-1 2 -1 2 -1 -1	
-1 2 2 2 -1 -1	
-1 -1 -1 -1 -1	

Problemsetter: Abdullah Al Mahmud

Special Thanks To: Manzurur Rahman Khan