Problem C Weird Fence
 Input: Standard Input
 Output: Standard Output

In the land of our great Sultan, the World Weird Fence (WWF) festival is going to take place again. For the festival, some poles are set up in a Cartesian plane. Each pole is colored in either red or blue color. You can connect two poles with a chain that consists of multi-colored rings thus creating a weird fence. Each pole has a single hook so you can not connect more than one chain to a pole. Now, though you have an unlimited supply of chains all having the same length, it's important to note that each of the chains has a red ring at one end $\&$ a blue ring at the other end and you are only allowed to hook up a ring to a pole with same color. Also, it's obvious that you can use a chain to connect two poles if \& only if the chain's length is greater than or equal to the linear distance of those two poles.

Given the co-ordinates of the poles \& a positive integer \mathbf{k}, write a program to find the minimum possible integer length for the chains so that at least \mathbf{k} weird fences can be made. The fences may cross each other.

Input

The first line of the input file is the number of test cases \mathbf{N}. This line will be followed by a blank line. \mathbf{N} test cases follow. First line of each test case contains two positive integers \mathbf{P} \& \mathbf{k} where \mathbf{P} is the number of poles on the plane. ($\mathbf{1}<=\mathbf{P}, \mathbf{k}<=\mathbf{1 0 0}$). Each of the next \mathbf{P} lines has two integers $\mathbf{X} \& \mathbf{Y} \&$ the word "red" / "blue". $\mathbf{X} \& \mathbf{Y}$ are the co-ordinates of the pole ($\mathbf{1 0 0 0}<=\mathbf{X}, \mathbf{Y}<=\mathbf{1 0 0 0}) \&$ the word is the color of that pole. No two poles will be in the same location. There will be a blank line between test cases.

Output

For each test case output a single integer in a line which is the minimum integer length of the chains that is necessary to make at least \mathbf{k} fences. If it is not possible to build \mathbf{k} fences with the given constraints, print the word "Impossible" in a single line.

Sample Input	Sample Output
2	6
62	Impossible
-35 blue	
-33 red	
15 blue	
20 red	
46 blue	
$4-1$ red	
64	
-35 blue	
-3 3 red	5 blue
20 red	4 blue
$4-1$ red	

