Anti Arithmetic Sequence

Input: Standard Input
Output: Standard Output

An anti-arithmetic sequence is one in which no subsequence of length p does form an arithmetic sequence. An arithmetic sequence is a sequence of numbers such that the difference of any two successive members of the sequence is a constant. For instance, the sequence $3,5,7,9,11,13 \ldots$ is an arithmetic progression with common difference 2 . Now for a given p an infinite anti-arithmetic sequence is built in the following way.

- The sequence will contain only positive numbers and strictly increasing.
- The first $\mathrm{p}-1$ numbers of the sequence is $1,2, \ldots$, $\mathrm{p}-1$. After that each time the smallest number is added to the sequence so that no subsequence of length p forms an arithmetic sequence. For $p=3$ the infinite sequence is $1,2,4,5,10,11,13,14,28,29$ and so on.
Your task is to given p and n find the nth value of the anti-arithmetic sequence.

Input

First line of the input contains an integer $\mathrm{T}(1 \leq \mathrm{T} \leq 1000)$ which denotes the number of test cases. Then each of the following T lines contains one test case. Each case contains 2 integers $n\left(1 \leq n \leq 2 * 10^{9}\right)$ and p ($3 \leq p \leq 30$).

Output

For each test case output contains 1 number indicating the nth value of the anti arithmetic sequence of p. This value will always fit into 64-bit signed integer.

Sample Input

3	29
103	12
105	130
100	

Output for Sample Input
29
12
130

Problemsetter: Abdullah al Mahmood
Special Thanks: Derek Kisman

