I was thinking quite a long time how to solve this, but still no results


regards,
Endrju
Moderator: Board moderators
mysword wrote:Can the houses seperated by the obstacles? That means the some house cannot reach other houses even clearing all the snow. If this case can happen, output what?
Problem statement wrote:During the summers, going from any of the four friends
I think there are no such test cases; my accepted program would just output the input.Can the houses seperated by the obstacles? That means the some house cannot reach other houses even clearing all the snow. If this case can happen, output what?
Well, my solution is the fastest on the ranklist, but in the worst case it's O((mn)^2), too.My algorithm runs in O(n^4), but TLE....
Code: Select all
10 1
AooBooCooD
10 1
AoCBoooD.#
10 1
A.CBoooD.#
10 1
A..B..C..D
12 3
oooooooooooo
oAooBooCooDo
oooooooooooo
12 3
oooooooooooo
oA..B..C..Do
oooooooooooo
12 5
oooooooooooo
oAooBooCooDo
o.ooooo.oooo
o.ooooo.oooo
o......ooooo
12 5
oooooooooooo
ooooBooCooDo
A.oo.oo.ooo.
o.oo.oo.ooo.
oo..o..o...o
12 5
oooooooooooo
ooooBooCooDo
A.oo.oo.ooo.
o.oo.oo.oo..
oo..o..o...o
6 2
AooBCD
oooo##
6 2
A..BCD
oooo##
6 6
AooooB
oooooo
oooooo
oooooo
oooooo
CooooD
5 5
ooAoo
ooooo
BoooC
ooooo
ooDoo
5 5
ooAoo
Boooo
ooooo
ooooC
ooDoo
4 4
Ao#B
o.oo
#o.o
CoDo
20 10
oooooooooooooooooooo
Aooooooooooooooooooo
ooooooooooooooBooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooooooooooooooooo
oooooCoooooooooooooo
ooooooooooooooooDooo
oooooooooooooooooooo
20 10
oooooooooooooooooooo
Aoooo#oooooooo#ooo##
ooooo#ooooo#ooBooooo
ooooooo#o#oooooooooo
oooooooo#ooooooooooo
ooooo#oooo#ooo#ooooo
oooooooooooo#ooo#ooo
oo#ooCoo#ooooooooooo
ooooo#oooooo#oooDooo
ooooo#ooooooooooooo#
20 10
oooooo#ooB#oooooooo#
#oo#o#oo##Cooo#oo#oo
o#ooooo#o###o#o#oo#o
ooo#o#o#oo#ooooo#ooo
o##o#o#ooo#ooo#oooo#
o#oooooo#oo##oo#oooo
oo###oo#oooooo#oo#oo
ooooo#Do#o#oo#o#oooo
o#o##A##o#o##oooo#o#
ooooooooooooooo#oo#o
20 10
oooooo#ooB#..o....o#
#oo#o#oo##Cooo#oo#..
o#ooooo#o###o#o#oo#.
ooo#o#o#oo#ooooo#o..
o##o#o#ooo#ooo#ooo.#
o#oooooo#oo##oo#oo..
oo###oo#oooooo#oo#o.
ooooo#Do#o#oo#o#oo..
.#o##A##o#o##oooo#.#
..ooooooooooooo#oo#o
0 0
Code: Select all
10 1
A..B..C..D
10 1
A.CB...D.#
10 1
A.CB...D.#
10 1
A..B..C..D
12 3
oooooooooooo
oA..B..C..Do
oooooooooooo
12 3
oooooooooooo
oA..B..C..Do
oooooooooooo
12 5
oooooooooooo
oA..BooC..Do
o.ooooo.oooo
o.oooo..oooo
o......ooooo
12 5
oooooooooooo
ooooBooC..Do
A.oo.oo.ooo.
o.oo.o..ooo.
o......o...o
12 5
oooooooooooo
ooooBooCooDo
A.oo.oo.oo..
o.oo.oo.oo..
o..........o
6 2
A..BCD
oooo##
6 2
A..BCD
oooo##
6 6
A....B
.ooooo
.ooooo
.ooooo
.ooooo
C....D
5 5
ooAoo
oo.oo
B...C
oo.oo
ooDoo
5 5
ooAoo
B..oo
oo.oo
oo..C
ooDoo
4 4
A.#B
o...
#o.o
C.Do
20 10
oooooooooooooooooooo
A.....oooooooooooooo
ooooo.........B..ooo
ooooo.oooooooooo.ooo
ooooo.oooooooooo.ooo
ooooo.oooooooooo.ooo
ooooo.oooooooooo.ooo
oooooCoooooooooo.ooo
ooooooooooooooooDooo
oooooooooooooooooooo
20 10
oooooooooooooooooooo
A....#oooooooo#ooo##
oooo.#ooooo#ooBooooo
oooo...#o#oooo.ooooo
oooooo.o#.......oooo
ooooo#....#ooo#.oooo
ooooo..ooooo#oo.#ooo
oo#ooCoo#oooooo..ooo
ooooo#oooooo#oooDooo
ooooo#ooooooooooooo#
20 10
oooooo#..B#oooooooo#
#oo#o#..##C..o#oo#oo
o#.....#o###.#o#oo#o
...#o#o#oo#o....#ooo
.##o#o#...#oo.#..oo#
.#oooo..#.o##.o#.ooo
..###o.#o.....#o.#oo
o..oo#Do#o#oo#o#.ooo
o#.##A##o#o##....#o#
oo............o#oo#o
20 10
oooooo#..B#........#
#oo#o#..##C..o#oo#..
o#.....#o###.#o#oo#.
...#o#o#oo#o..oo#o..
.##o#o#...#oo.#ooo.#
.#oooo..#.o##.o#oo..
.o###o.#o.....#oo#o.
.oooo#Do#o#oo#o#....
.#o##A##o#o##....#.#
..............o#oo#o
0 0
I'm backmysword wrote:my program is at the top of the ranklist now
Basically, I'm doing dynamic programming on this subproblem. A set of people A starts at a location u=(y,x). How many 'o' squares must they cover (including the starting one) to return to their respective houses? Let this number be f(u,A). I'll use map to denote the character at location u.Per wrote:Could you elaborate a bit on this point?
Ah, very nice! I take it you use every house map \in A with potential f(u, A \ map) as the source(s) for step 3?mf wrote:Overall, this algorithm reduces the original problem to 7 shortest path problems, and its running time is dominated by Dijkstra's algorithm.
Btw, may I ask for some hint on 10857?
I take it you use every house map \in A with potential f(u, A \ map) as the source(s) for step 3?